首页|基于时序卷积网络的早期帕金森多模态检测系统

基于时序卷积网络的早期帕金森多模态检测系统

扫码查看
帕金森病是最常见的神经退行性疾病之一,其临床特征与其他神经退行性疾病有重叠,且缺乏明确的病理机制,导致早期诊断检测困难、误诊率高等问题;为了研究有效的早期帕金森病检测方法,深入探索帕金森病发展的时间特征规律,并提高早期帕金森病预测、分析和诊断决策的准确性,设计了一种基于时序卷积网络的早期帕金森病多模态检测系统,为及时发现早期帕金森病提供辅助诊断依据;该系统利用语音、步态和受试者自测数据,采用多元线性池化方法进行多模态融合,结合时间卷积网络和参数共享方式,以提高系统的检测精度并降低过拟合风险;实验测试结果显示,基于时序卷积网络的早期帕金森病检测系统的准确率达到96。22%,在多项评估指标上优于传统的帕金森检测模型,展现出良好的早期帕金森联合检测效果。
Early Parkinson's Multimodal Detection System Based on Temporal Convolutional Networks
Parkinson's disease is one of the most common neurodegenerative diseases,its clinical features overlap with other neu-rodegenerative diseases and lack a clear pathological mechanism,leading to difficulties in early diagnosis and high misdiagnosis rates;In order to study effective early detection methods for Parkinson's disease,deeply explore the temporal characteristics of Parkinson's disease development,and improve the accuracy of early Parkinson's disease prediction,analysis,and diagnostic decision-making,an early Parkinson's disease multimodal detection system based on temporal convolutional networks is designed,providing an auxiliary diagnostic basis on the timely detection of early Parkinson's disease;The system utilizes the speech,gait,and subject self-test data,adopts the multiple linear pooling method for multimodal fusion,and integrates the time convolutional networks and parameter sharing to improve the detection accuracy of the system and reduce overfitting risks;Experimental results show that the accuracy of the early Parkinson's disease detection system based on temporal convolutional networks reaches 96.22%,which is superior to traditional Parkinson's detection models in multiple evaluation indicators and demonstrates good early Parkinson's joint detection performance.

parkinson's diseasetemporal convolutional networklinear poolingmultimodaloverfitting

周希武、杨明昭、胡殿雷

展开 >

淮安市第二人民医院信息科,江苏淮安 223001

徐州医科大学医学信息与工程学院,江苏徐州 221000

徐州医科大学 基础医学院,江苏 徐州 221000

帕金森 时序卷积网络 线性池化 多模态 过拟合

江苏省高等学校基础科学(自然科学)研究重大项目徐州市科技计划徐州市科技计划

22KJA120002KC21182KC22224

2024

计算机测量与控制
中国计算机自动测量与控制技术协会

计算机测量与控制

CSTPCD
影响因子:0.546
ISSN:1671-4598
年,卷(期):2024.32(6)
  • 8