首页|基于改进的CenterNet变电站设备红外温度检测方法

基于改进的CenterNet变电站设备红外温度检测方法

扫码查看
红外检测能够检测变电站电力设备温度异常,降低安全事故发生的概率,因此,提出一种基于改进的CenterNet目标检测算法模型CenterNet_PRO;该算法采用了 ShuffleNet V1/V2作为骨干网络、引入了 FPN来提取多尺度特征,为了克服不同尺度目标检测的难点、增加旋转角度回归分支,用于预测目标的旋转角度以及改进的IoU Loss进行优化,进一步提高模型检测速度和准确率;通过阈值分割法提取电力设备表面温度并分析计算,设计制定电力设备温度缺陷判断规范、温度警告阈值,根据该规范即可判断电力设备的相关缺陷;实验结果表明,改进的CenterNet模型平均精度达到了 90%,相比于传统的CenterNet模型,平均精度提高了 1。3个百分点,可以满足实际变电站场景下对电力设备红外检测的高要求。
Infrared Temperature Detection Method for Substation Equipment Based on Improved CenterNet
Infrared detection can detect the abnormal temperature of power equipment in substations,and reduce the probability of safety accidents.Therefore,an object detection algorithm model of CenterNet_PRO based on improved CenterNet is proposed.This algorithm adopts ShuffleNet V1/V2 as a backbone network,and introduces a feature pyramid network(FPN)to extract multi-scale features.In order to overcome the difficulties of target detections at different scales,the algorithm increases the rotation angle regres-sion branches,predicts the rotation angle of the target,and optimizes with the improved IoU Loss,further improves the model detec-tion speed and accuracy.The threshold segmentation method is adopted to extract the surface temperature of power equipment and an-alyze and calculate the surface temperature,which designs and defines the temperature defect judgment specification and temperature warning threshold of power equipment,and judges the related defects of power equipment according to the specification.The experi-mental results show that the average accuracy of the improved CenterNet model reaches up to 90%,compared with the traditional CenterNet model,the average accuracy improved by 1.3%,which can meet high requirements for infrared detection of power equip-ment in actual substation scenarios.

centerNetshuffleNetpower equipmentinfrared image temperature defect detectionmulti-scale feature extraction

张佳钰、蔡泽烽、冯杰

展开 >

浙江理工大学计算机科学与技术学院(人工智能学院),杭州 310018

浙江理工大学信息科学与工程学院,杭州 310018

CenterNet ShuffleNet 电力设备 红外图像温度缺陷检测 提取多尺度特征

浙江省大学生科技创新活动计划(新苗人才计划)项目

2023R406019

2024

计算机测量与控制
中国计算机自动测量与控制技术协会

计算机测量与控制

CSTPCD
影响因子:0.546
ISSN:1671-4598
年,卷(期):2024.32(7)
  • 19