首页|基于多特征融合图像分割的焊缝检测焊接系统

基于多特征融合图像分割的焊缝检测焊接系统

扫码查看
针对工业生产中焊缝检测系统存在易受光照影响、依赖人工和碰撞事故风险高等问题,开发了一套基于多特征融合分割算法的自动化焊缝检测系统;系统采用激光深度相机获取焊缝深度图像,结合多特征融合与斜矩包络线拟合的图像分割算法解决了表面不平整导致的分割难题;通过标定算法,确保了焊缝位置坐标和宽度的准确获取;提出了基于定向包围盒(OBB)的避障检测算法,防止焊接过程中的碰撞;利用机械臂建立了测试系统;经实验测试该系统在检测焊缝宽度和定位方面有效,平均误差分别为0。302 9 mm和0。339 3 mm,达到工业应用标准;该系统优化了焊接路径和碰撞检测,有效提升了焊接质量与生产效率。
Seam Detection Welding System Based on Image Segmentation with Multi-feature Fusion
Welding seam inspection systems have the issues of susceptibility to lighting conditions,reliance on manual operation,and high risk of collision accidents in industrial production,in response to these problems,an automated welding seam detection sys-tem based on multi-feature fusion segmentation algorithm is developed.The system employs a laser depth camera to capture depth im-ages of weld seams.It combines the multi-feature fusion with the skew moment envelope fitting in the image segmentation algorithm to overcome the challenges posed by uneven surfaces.The accurate acquisition of weld seam coordinates and width is ensured through the calibration algorithm.Additionally,a collision avoidance detection algorithm based on oriented bounding boxes(OBB)is proposed to prevent collisions during welding process.The system is built by using a robotic arm.Experimental results demonstrate that the system has an effectiveness in detecting weld seam width and positioning,with an average error of 0.302 9 mm and 0.339 3 mm,re-spectively,meeting industrial application standards.This system optimizes the welding path and collision detection,significantly en-hancing welding quality and production efficiency.

image segmentationpose estimationpath planningautomation systemseam detection

沈泽鑫、宋科夫、张琳琳、曾辉雄、李俊

展开 >

福建农林大学机电工程学院,福州 350002

中国科学院海西研究院泉州装备制造研究中心,福建泉州 362200

图像分割 位姿估计 路径规划 自动化系统 焊缝检测

国家自然科学基金中国福建光电信息科学与技术创新实验室(闽都创新实验室)福州市科技计划项目

620014522021ZZ1162022-ZD-001

2024

计算机测量与控制
中国计算机自动测量与控制技术协会

计算机测量与控制

CSTPCD
影响因子:0.546
ISSN:1671-4598
年,卷(期):2024.32(7)
  • 21