首页|云网融合中分布式网络入侵路径跟踪检测方法

云网融合中分布式网络入侵路径跟踪检测方法

扫码查看
随着云计算和网络虚拟化的快速发展,云网融合环境下的分布式网络较普通网络更加复杂和庞大,导致网络入侵路径跟踪的查全率难以得到保障,为此提出云网融合环境下分布式网络入侵路径跟踪检测方法;结合云网融合环境下分布式网络的特性,构建了分布式网络模型,将网络数据流信息转化为统一的格式后,考虑到干扰因素对于网络数据流信息带来的影响,对处理后的信息进行滤波处理,利用网络数据流信息计算云网融合环境下分布式网络的入侵信息特征因子,利用入侵信息特征因子实现对入侵路径的跟踪检测;在测试结果中,网络入侵路径跟踪检测准确性可达99。9%,F1值始终大于0。85,明显优于对照组,具有较高的查全性能。
Network Intrusion Path Tracking and Detection Method for Cloud Network Fusion Environment
With the rapid development of cloud computing and network virtualization,distributed networks in cloud network fu-sion environments are more complex and massive than ordinary networks,making it difficult to ensure the recall rate of network intru-sion path tracking.Therefore,a distributed network intrusion path tracking and detection method in cloud network fusion environ-ments is proposed.Combined with the characteristics of distributed networks in the cloud network fusion environments,a distributed network model is constructed.After the network data flow information is converted into a unified format,the processed information is filtered and processed by considering the impact of interference factors on the network data flow information.The intrusion informa-tion feature factor of the distributed network in the cloud network fusion environment is calculated by using the network data flow in-formation,and the intrusion path is tracked and detected by using the intrusion information feature factor.The test results show that the accuracy of the network intrusion path tracking and detection can reach 99.9%,and the F1 value is always greater than 0.85,it is significantly better than that of the control group and has high completeness performance.

network intrusion pathcloud-network convergencedistributed network modeldata flow informationcharacteriza-tion factor

杨波、蒋金陵、徐胜超、王宏杰、毛明扬、蒋大锐

展开 >

广州华商学院人工智能学院,广州 511300

网络入侵路径 云网融合 分布式网络模型 数据流信息 特征因子

国家自然科学基金面上项目广州华商学院校内科研导师制项目

617722212023HSDS34

2024

计算机测量与控制
中国计算机自动测量与控制技术协会

计算机测量与控制

CSTPCD
影响因子:0.546
ISSN:1671-4598
年,卷(期):2024.32(8)