首页|融合转置卷积的YOLOv3吸烟检测算法

融合转置卷积的YOLOv3吸烟检测算法

YOLOv3 Smoking Detection Algorithm Fused with Transposed Convolution

扫码查看
为预防公共场所因吸烟而引发的安全事故,在YOLOv3框架的基础上提出了改进的吸烟检测算法;首先针对传统上采样操作丢失像素信息等问题,设计出一种卷积-转置卷积模块进行替换;在特征融合部分加入坐标注意力机制,使网络更好关注小目标;使用改进的k-means++优化先验框;最后将GIoU替换IoU作为算法的损失函数,进一步提高检测精度;此外,构建了一个多场景的抽烟数据集,并对数据集进行数据增强与扩充;实验结果表明,改进后的算法较原算法在AP@0.5和AP@0.5∶0.95上分别提高5.58%和3.34%,FPS降低3左右.
To prevent safety incidents caused by smoking in public places,an improved smoking detection algorithm based on YOLOv3 framework is proposed.Firstly,to address the missing pixels in traditional upsampling,a convolution module with convolu-tional transpose for the replacement is designed,In the feature fusion part,the coordinate attention mechanism is added to make the network better focus on small targets.The improved k-means++is used to optimize the prior box.Finally,the generalized intersec-tion over union(GIoU)is replaced with the intersection over union(IoU),it is taken as the loss function of the algorithm to further improve the detection accuracy.In addition,the multi-scene smoking dataset is constructed to achieve the data augmentation and ex-pansion on the dataset.Experimental results show that compared to the original algorithm,the improved algorithm increases the AP@0.5 and AP@0.5∶0.95 by 5.58%and 3.34%,respectively,and the frames per second(FPS)decreases by about 3 points.

deep learningtarget detectionsmall targetsmokingtransposed convolutionattention mechanism

龚英杰、沈希忠

展开 >

上海应用技术大学 电气与电子工程学院,上海 201418

深度学习 目标检测 小目标 吸烟 转置卷积 注意力机制

2024

计算机测量与控制
中国计算机自动测量与控制技术协会

计算机测量与控制

CSTPCD
影响因子:0.546
ISSN:1671-4598
年,卷(期):2024.32(8)