首页|基于深度学习方法的传送带缺陷检测

基于深度学习方法的传送带缺陷检测

扫码查看
针对传送带瑕疵在图像中所占有的像素相对有限、特征相对微弱且分布不均匀的问题,设计了一个传送带缺陷检测系统,并提出了一种基于高斯混合模型的标签分配策略;利用特征感受野遵循高斯分布的先验信息进行高斯建模,并通过动态调整机制适应不同尺度的传送带缺陷,能够更有效地提升对微小瑕疵的捕捉能力;使用感受野距离取代交并比来衡量高斯感受野和真实标签的相似度,并通过二者之间的相似度来分配样本,从而有效提高了样本分配的准确性;使用高斯混合模型并通过期望最大化算法拟合概率分布,实现了对特征点的自适应正负样本分配,能够有效避免微小瑕疵特征微弱所导致的漏检问题;结果表明,高斯混合模型标签分配策略对传送带缺陷检测精度的提升十分明显,相对于基准网络,精度提升3。8%。
Belt Defect Detection Based on Deep Learning Methods
To address limited pixels,relatively weak features,and uneven distribution of defects in conveyor belt images,a con-veyor belt defect detection system is designed,and a label assignment strategy based on Gaussian mixture model is propopsed.The Gaussian distribution prior information of the feature receptive fields is applied to build the Gaussian model,which can adapt to defects in different belts through dynamic adjustment mechanisms,thereby effectively improving the detection capability for minor defects.The intersection over union with receptive field distance is replaced to measure the similarity between Gaussian receptive fields and true labels,the sample based on their similarity is allocated to effectively improve the accuracy of sample assignment.The Gaussian mixture model and expectation maximization algorithm are used to implement the probability distribution fitting,achieve the adaptive allocation of positive and negative samples for feature points,and effectively avoid the missed detections caused by minor defects.Ex-perimental results show that the Gaussian mixture model label assignment strategy increases a significant accuracy of conveyor belt de-fect detection,improving the accuracy by 3.8%compared to the baseline network.

beltGaussian distributionreceptive fieldGaussian mixture modeldefect detection

钟信、彭力

展开 >

江南大学物联网工程学院物联网技术应用教育部工程研究中心,江苏无锡 214122

传送带 高斯分布 感受野 高斯混合模型 缺陷检测

国家自然科学基金国家自然科学基金

6187311261802107

2024

计算机测量与控制
中国计算机自动测量与控制技术协会

计算机测量与控制

CSTPCD
影响因子:0.546
ISSN:1671-4598
年,卷(期):2024.32(8)