首页|基于多尺度工况增强网络及Informer的设备剩余寿命预测

基于多尺度工况增强网络及Informer的设备剩余寿命预测

扫码查看
设备RUL预测在提高设备可靠性、安全性、降低维护成本等方面具有重要意义;通过提前发现设备的健康状态和潜在故障,RUL预测有助于降低突发故障风险、延长设备寿命,提高工作效率,确保任务正常运行;然而在面对设备越来越复杂,采集到的传感器数据维度越来越高,传统方法和某些深度学习方法在处理特征关系、长时间序列数据和挖掘重要传感器数据方面存在限制;为了提高预测准确性,提出一种基于MWCEN结合Informer的混合模型——MWCEN-Informer,MWCEN通过动态工况编码算法对设备时序数据进行工况编码,对设备传感器进行一维多尺度混合卷积充分提取特征信息,使用多分支通道注意力机制增强有效特征,增强后的传感器数据输入Informer用于分析设备传感器时序数据的关联性,以实现更准确的设备RUL预测;以基于C-MAPSS的通用涡扇发动机数据集进行验证,结果表明,该模型在4个子集上的RMSE平均减少了 5.5%,S-Score平均减少了 4.7%,能有效提高设备在复杂工况和复杂故障下的RUL预测精度.
RUL Prediction of Device Based on Multi-scale Working Condition Enhancement Network and Informer
It is of great significance for the remaining useful life(RUL)prediction of devices to improve their reliability safety,and reducing maintenance costs.By discovering the health status and potential faults of devices in advance,RUL prediction helps to reduce the risk of sudden failure,extend device life,improve work efficiency,and ensure the normal operation of tasks.However,with the increasing complexity of devices,and the collected sensor data have increasingly higher dimensions,traditional methods and some deep learning methods have limitations in processing the feature relationships,long time series data and mining important sensor data.Based on the multi-scale work condition enhancement network(MWCEN)and Informer model,this paper proposes a hybrid model of MWCEN-Informer to improve the prediction accuracy.The MWCEN encodes the device time series data by using the dynam-ic work condition coding algorithm,fully extracts the feature information by performing one-dimensional multi-scale hybrid convolu-tion on the device sensor information,enhances the effective features by using the multi-branch channel attention mechanism,inputs the enhanced sensor data into the Informer model to analyze the correlation of the device sensor timing data,and achieves more accu-rate RUL prediction of the device.Validation is carried out on a generic turbofan engine data set based on C-MAPSS,the results show that the model reduces the RMSE by an average of 5.5%and the S-Score by an average of 4.7%on the four subsets,which effective-ly improves the RUL prediction accuracy of the device under complex operating conditions and complex faults.

RUL predictionmulti-scale convolutionwork condition codingattention mechanismInformer

刘付渝杰

展开 >

广东省茂名市质量计量监督检测所,广东茂名 525000

广东工业大学计算机学院,广州 510006

剩余寿命预测 多尺度卷积 工况编码 注意力机制 Informer

广东省市场监督管理局科技项目茂名市科技计划项目

2024CZ11230506164551410

2024

计算机测量与控制
中国计算机自动测量与控制技术协会

计算机测量与控制

CSTPCD
影响因子:0.546
ISSN:1671-4598
年,卷(期):2024.32(8)