首页|基于改进YOLOv5的车辆红外图像多目标识别方法

基于改进YOLOv5的车辆红外图像多目标识别方法

扫码查看
城乡结合部的建设是城市建设中重要的一环,由于难以布设有效的检测设备,该区域车辆目标的夜间监管一直是城市管理的难题;基于无人机平台红外夜视图像多运动目标检测为解决这一难题提供了智能化路径:一种基于改进YOLOv5的红外夜视条件下多运动目标识别方法,分析了交通对象特征、车辆停放对道路红外辐射影响等,引入了 CBAM注意力机制,以提取和融合空间和通道信息,增强了网络对目标的表达能力;综合Efficient IOU Loss和Focal Loss的优点,使用EIoU-Focal Loss损失函数替换了 CIoU Loss函数,解决了样本不平衡、红外图像的低分辨率、噪声干扰大以及目标与背景对比度低等弊端,提高了检测的准确性;通过加入DCN动态调整卷积核的形状,适应图像中目标的形变,降低因形状不规则、变化较多造成的识别影响;在公开数据集上对改进网络与经典网络进行实验和数据比较,结果表明:综合改进后的网络对于多目标的识别,在YOLOv5x网络较高的识别结果基础上,精度提升3。9%,召回率提升4。1%,F1增加4。4%。
Multi-target Recognition Method for Vehicle Infrared Images Based on Improved YOLOv5
The rural-urban fringe is an important part of urban construction.it is difficult to effectively deploy detection equip-ment,the night supervision of vehicle targets in this area always is a difficult problem for urban management.This paper provides an intelligent approach of detecting multiple moving targets for solving the problem in infrared night vision images based on UAV plat-forms,presents a multi-moving target recognition method based on improved YOLOv5 in infrared night vision conditions,and analyzes the characteristics of traffic objects and impact of vehicle parking on road infrared radiation,etc.Convolutional block attention module(CBAM)attention mechanism is introduced to extract and integrate spatial with channel information to enhance the expression ability of the network on the target.By combining the advantages of efficient IOU loss and focal loss,the EIoU-focal loss function is used to replace the CIoU loss function,solve the disadvantages of sample imbalance,low resolution of infrared image,large noise interference and low contrast between target and background,and improve the detection accuracy.By adding the DCN to dynamically adjust the shape of the convolution kernel,it can adapt to the deformation of the object in images,and reduce the recognition influence caused by irregular shape and many changes.Finally,experiments and data comparisons between improved network and typical network are im-plemented on public dataset,the results show that for multi targets recognition,the improved network based on YOLOv5 has higher recognition results,it increases the accuracy,recall rate andF1value by 3.9%,4.1%and 4.4%,respectively.

deep learningmulti-object recognitionYOLOv5deformable convolutionattention mechanisms

左涛、周慧龙、原伟哲

展开 >

上海城投城市发展研究院有限公司,上海 200030

西安工程大学电子信息学院,西安 710048

深度学习 多目标识别 YOLOv5 可变形卷积 注意力机制

国家自然科学基金陕西省自然科学基础研究计划项目

519054052022JM407

2024

计算机测量与控制
中国计算机自动测量与控制技术协会

计算机测量与控制

CSTPCD
影响因子:0.546
ISSN:1671-4598
年,卷(期):2024.32(8)