首页|基于改进的GoogleNet-ResNet算法的路基病害智能分类方法

基于改进的GoogleNet-ResNet算法的路基病害智能分类方法

扫码查看
针对路基病害分类算法存在的复杂病害辨识难度大、多视图雷达图像特征利用不充分等问题,提出一种基于改进的GoogleNet-ResNet算法的路基病害智能分类方法;首先,引入坐标注意力和改进的Inception模块对GoogleNet网络结构进行优化;然后,利用改进的GoogleNet学习c-scan数据特征剔除非目标病害,实现病害目标的粗分类;最后,将分类成病害的b-scan数据输入基于迁移学习的ResNet50,实现病害的细分类;实验表明,改进的GoogleNet进行病害粗分类的准确率可达到98。2%,检测速度可达90。9 fps;基于迁移学习的ResNet50进行病害细分类的准确率可达90。5%,检测速度可达52。6 fps;该算法的准确率比单独的改进的GoogleNet网络高10。1%,比单独的ResNet50网络高7。4%,有效地提高了道路路基病害的识别精度与效率。
Intelligent Classification Method for Subgrade Disease Based on Improved GoogleNet-ResNet Algorithm
There are the shortages of complex disease identification and poor utilization of multi-view radar image features in sub-grade disease classification algorithms,an intelligent classification method for roadbed diseases based on an improved GoogleNet-Res-Net algorithm is proposed.Firstly,the coordinate attention and improved Inception modules are introduced to optimize the GoogleNet network structure.Then,the improved GoogleNet is utilized to learn the c-scan data features and eliminate non-target diseases,a-chieving the coarse classification of the disease targets.Finally,the b-scan data classified as the diseases is input into the ResNet50 model based on the transfer learning to achieve the fine classification of the diseases.The results show that the accuracy of the im-proved GoogleNet reaches by 98.2%for coarse disease classification,and the detection speed by 90.9 fps.The accuracy of the disease sub-classification of ResNet50 based on the transfer learning reaches by 90.5%,and the detection speed by 52.6 fps.The accuracy of the proposed algorithm is 10.1%higher than that of the improved GoogleNet network,and 7.4%higher than that of the ResNet50 network.This algorithm effectively improves the recognition accuracy and efficiency of roadbed disease detection.

road engineeringsubgrade disease recognitioncascade neural networkmulti view radar images3D ground pene-trating radar

陈登峰、杨小燕、张温、何拓航、陈俊彤

展开 >

西安建筑科技大学建筑设备科学与工程学院,西安 710000

西安建筑科技大学管理学院,西安 710000

西安建筑科技大学公共管理学院,西安 710000

道路工程 路基病害识别 级联神经网络 多视图雷达图像 三维探地雷达

陕西省软科学研究计划项目西安市高校院所人才服务企业项目

2021KRM02923GXFW0045

2024

计算机测量与控制
中国计算机自动测量与控制技术协会

计算机测量与控制

CSTPCD
影响因子:0.546
ISSN:1671-4598
年,卷(期):2024.32(8)