首页|基于自适应特征提取网络的复杂环境下人脸识别

基于自适应特征提取网络的复杂环境下人脸识别

扫码查看
针对现有人脸识别算法在运动模糊、低光照等真实复杂环境下识别率低、鲁棒性较差,导致难以稳定应用在实际人脸识别任务的问题,提出一种基于自适应特征提取网络的复杂环境下人脸识别方法;该网络结合传统方法的特征提取技术和深度学习网络特征表示能力,实现了对不同复杂环境下人脸稳定识别;设计了一种自适应纹理特征提取算法,通过自动获取阈值来实现特征提取,提高网络计算效率;使用逆向传播算法改进深度信念网络,并引入共轭梯度算法解决网络的梯度消失问题,减少其收敛时间,提高算法鲁棒性;经实验验证,所提方法在标准LWF数据集和复杂环境CASIA、MS1M数据集中的准确率分别达到99。72、89。54及88。75%,参数量和网络计算量分别为2。84 M和0。67 G,均优于对比算法,能够满足复杂环境下人脸识别任务需求。
Face Recognition in Complex Environment Based on Adaptive Feature Extraction Network
Aiming at the problem that existing face recognition algorithms have low recognition rates and poor robustness in real and complex environments such as motion blur and low light,which makes it difficult to be stably applied in actual face recognition tasks,a face recognition method in complex environments based on adaptive feature extraction network is proposed.The network combines the feature extraction technology of traditional methods with the feature representation ability of deep learning network,and realizes the stable face recognition in different complex environments.An adaptive texture feature extraction algorithm is designed,which realizes the feature extraction by automatically obtaining the threshold value and improves the network computing efficiency.The backpropagation algorithm is used to improve the deep belief network,and the conjugate gradient algorithm is introduced to solve the gradient disappearance of the network,which reduces its convergence time and improves the algorithm's robustness.Experimental results show that the accuracy of the proposed method reaches 99.72%,89.54%and 88.75%on standard LWF dataset,CASIA and MS1M datasets in complex environments,respectively.The parameter quantity and network computation are 2.84 M and 0.67 G,re-spectively,the proposed method is superior to the comparison algorithm,and can meet the needs of face recognition in complex envi-ronments.

complex environmentface recognitionfeature extractiondeep learningdeep belief network

李达

展开 >

同方知网数字出版技术股份有限公司,北京 100083

复杂环境 人脸识别 特征提取 深度学习 深度信念网络

知网数据中心云平台建设项目

KeJ5S2301201

2024

计算机测量与控制
中国计算机自动测量与控制技术协会

计算机测量与控制

CSTPCD
影响因子:0.546
ISSN:1671-4598
年,卷(期):2024.32(8)