首页|基于YOLOv7-CA-BiFPN的路面缺陷检测

基于YOLOv7-CA-BiFPN的路面缺陷检测

扫码查看
路面坑洼是主要道路缺陷,会损坏车辆,影响驾驶员的安全驾驶,严重时还会导致交通事故,针对这个问题,提出了改进YOLOv7的道路坑洼检测算法;使用Mosaic+Mixup进行内置数据增强,扩充小样本数据集,增强模型泛化能力;引入CA注意力机制,将横纵位置信息编码,保证计算量的同时又能关注大范围位置信息;采用BIFPN双向特征金字塔网络,通过特征融合多尺度语义特征提高检测效率;将损失函数SIoU替换CIoU,有效解决回归中的样本不平衡问题;实验结果表明,改进之后的算法在坑洼数据集的平精度均值和精确率达到了 89。42%和90。12%,相比于原本的YOLOv7版本提高了 6。18%和1。96%,更准确更快速地应用于道路维修。
Road Surface Pothole Detection Based on YOLOv7-CA-BiFPN
Road potholes are the main road defects of roads,which can damage vehicles,affect driver safety,and even lead to traffic accidents in severe cases.To address this issue,an improved YOLOv7 road pothole detection algorithm is proposed.Mosaic+Mixup is used to to carry out the built-in data augmentation,expand the small sample datasets,and enhance the model generalization ability;By introducing an coordinate attention(CA)attention mechanism,the horizontal and vertical position information is encoded to ensure computational complexity while paying attention to the large-scale position information;BIFPN bidirectional feature pyramid network is adopted to improve detection efficiency through the feature fusion of multi-scale semantic features;By replacing the loss function SIoU with the CIoU,the sample imbalance in regression is effectively solved.Experimental results show that the improved algorithm achieves the mean value and accuracy of 89.42%and 90.12%in pit datasets,which are 6.18%and 1.96%higher than that of the original YOLOv7 version.It can be more accurately and quickly applied to road maintenance.

pit detectionYOLOv7attention mechanismdata augmentationBiFPN

高敏、李元

展开 >

沈阳化工大学信息工程学院,沈阳 110142

坑洼检测 YOLOv7 注意力机制 数据增强 BiFPN

2024

计算机测量与控制
中国计算机自动测量与控制技术协会

计算机测量与控制

CSTPCD
影响因子:0.546
ISSN:1671-4598
年,卷(期):2024.32(9)
  • 8