首页|通道空间深度感知的轻量化水下目标检测

通道空间深度感知的轻量化水下目标检测

扫码查看
提出了一种通道空间深度感知的轻量化水下目标检测网络CSDP-L-YOLO;该网络基于YOLOv5网络进行改进,由特征感知模块和双注意门控策略组成;特征感知模块旨在将解码器中的多级特征自适应抑制或增强,优化类内学习的一致性,解决水下场景复杂导致的误检和漏检问题;通过线性操作和混洗结构生成特征映射,减少冗余特征的融合和计算,以减少模型的参数量和计算量;双注意门控策略是在编码器中同时引入并发通道空间挤压-激励机制模块和卷积注意力模块,进一步关注强相关性特征,增强模型对特征的敏感度;实验结果表明,与基线模型YOLOv5-s相比,mAP提高了 2。4%,节省了 20%参数量和15。8%计算量,检测速度提升了 8。2 ms;此外,与目前较为先进的YOLOv8模型相比,mAP提高了 1。9%。
Lightweight Underwater Target Detection for Channel Spatial Depth Perception
A lightweight underwater target detection network CSDP-L-YOLO for channel spatial depth perception is proposed.The network is improved based on the YOLOv5 network and consists of the feature awareness module and two-attention gating strate-gy.The feature sensing module aims to adaptively suppress or enhance multi-level features in the decoder,optimize the consistency of in-class learning,and solve the false detection and missing detection caused by the complexity of underwater scenes.The feature map-ping is generated by the linear operation and mixing structure to reduce the fusion and calculation of redundant features,so as to re-duce the parameters and computational complexity of the model.The dual attention gating strategy introduces both the concurrent channel space squeezing excitation mechanism module and convolutional attention module into the encoder simultaneously,so as to further focus on the strong correlation features and enhance the sensitivity of the model on the features.Experimental results show that compared with the baseline model,the proposed model improves the mean average precision(mAP)by 2.4%,saves the parame-ters by 20%and the computation by 15.8%,and improves the detection speed by 8.2 ms.In addition,compared to currently more advanced YOLOv8 model,the mAP of the proposed model improves by 1.9%.

underwater target detectionchannel spatial depth perceptionattention mechanismmodel lightweightfeature fu-sionYOLO

赵瑞金、李海涛、陆光豪

展开 >

青岛科技大学信息科学技术学院,山东青岛 266061

水下目标检测 通道空间深度感知 注意力机制 模型轻量化 特征融合 YOLO

山东省重点研发计划(科技示范工程)青岛市海洋科技创新专项

2021SFGC070122-3-3-hygg-3-hy

2024

计算机测量与控制
中国计算机自动测量与控制技术协会

计算机测量与控制

CSTPCD
影响因子:0.546
ISSN:1671-4598
年,卷(期):2024.32(9)
  • 3