首页|基于知识图谱的水产养殖病害诊断技术研究

基于知识图谱的水产养殖病害诊断技术研究

扫码查看
水产养殖病害是影响水产养殖效益的重要因素,由于水产养殖病害文本数据杂乱无章,无法快速准确定位疾病原因,从而耽误诊断和治疗时机,导致水产养殖质量和产量下降;为解决上述问题,深入知识图谱的工作原理和模型特征,采用知识图谱技术完成水产养殖病害诊断总体方案设计,建立水产病害语料库,引入H-BIO标注策略,完成标注方案设计、改进BiLSTM模型构建,进行实体关系抽取和水产病害模型训练,完成水产养殖病害知识图谱可视化设计,并进行水产病害联合抽取实验;实验结果表明:基于知识图谱的改进BiLSTM模型在实体关系抽取方面效果较好、可靠性较高,有效提高了水产病害联合抽取准确率,构建了水产养殖病害可视化知识图谱,能够辅助作业人员快速准确进行水产病害诊断和治疗,对提升水产养殖生产效益具有十分重要的作用。
Research on Diagnosis Technology of Aquaculture Diseases Based on Knowledge Graph
Diseases in aquaculture are an important factor of affecting the efficiency of aquaculture.Due to the disorderly text data of aquaculture diseases,it is difficult to quickly and accurately locate the causes of diseases,which delays diagnosis and treatment,leading to a decrease in the quality and yield of aquaculture.To solve the above problems,the working principles and model features of knowledge graph are deeply studied,knowledge graph technology is used to implement the overall design of aquaculture disease di-agnosis,establish a corpus of aquaculture diseases,introduce the H-BIO annotation strategy,complete the annotation scheme design,improve the construction of the BiLSTM model,extract the entity relationships and train aquaculture disease models,complete the vi-sualization design of aquaculture disease knowledge graphs,and conduct the experiments on joint extraction of aquaculture diseases.Experimental results show that the improved BiLSTM model based on knowledge graph has good performance and high reliability in entity relationship extraction,effectively improving the accuracy of joint extraction of aquatic diseases.The visual knowledge graph of aquatic disease is constructed,which can help operators quickly and accurately diagnose and treat aquatic diseases.It plays a very im-portant role in improving the efficiency of aquaculture.

aquaculturedisease diagnosisknowledge graphH-BIO annotationBiLSTM model

陆光豪、李海涛、赵瑞金

展开 >

青岛科技大学信息科学技术学院,山东青岛 266061

水产养殖 病害诊断 知识图谱 H-BIO标注 BiLSTM模型

山东省重点研发计划(科技示范工程)课题青岛市海洋科技创新专项

2021SFGC070122-3-3-hygg-3-hy

2024

计算机测量与控制
中国计算机自动测量与控制技术协会

计算机测量与控制

CSTPCD
影响因子:0.546
ISSN:1671-4598
年,卷(期):2024.32(9)
  • 16