首页|基于改进YOLOv7的水下小目标检测算法研究

基于改进YOLOv7的水下小目标检测算法研究

扫码查看
目标检测研究一直是水下小目标检测的难题;针对水下小目标检测任务漏检率高、水下场景识别效果差的问题,提出一种利用YOLOv7改进的水下小目标检测技术;为了达到准确率的同时兼顾高检测速度,采用YOLOv7网络作为基础网络;该网络通过融合SENet注意力机制、增强FPN网络拓扑、结合EIoU损失函数,集中小目标更关键的特征信息,提高检测精度,同时降低模型复杂度;通过模拟测试,在测试集上确认了 mAP、P和R指标,并与其他传统目标检测技术进行了对比;结果表明,增强的算法优于竞争网络,并成功提高了测试集的检测精度。
Research on Underwater Small Target Detection Algorithm Based on Improved YOLOv7
Research on target detection has always been a challenge for underwater small target detection.To address the issues of high miss detection rate and poor underwater scene recognition in underwater small target detection tasks,an improved underwater small target detection technique based on YOLOv7 is proposed.In order to achieve the accuracy and balance the detection speed,the YOLOv7 network is adopted as the basic network.By fusing the SENet attention mechanism,enhancing the FPN network topology,and incorporating the EIoU loss function,the crucial feature information of small targets is concentrated in the network to increase the detection accuracy while reducing the complexity of the model.Through simulation tests,the indexes of mAP and P as well as R are confirmed on the test set,and compared with other conventional target detection techniques,the results show that the enhanced algo-rithm is superior to the competing networks and successfully improves the detection accuracy on the test set.

YOLOv7underwater small target detectionattention mechanismFPNEIoU

杜锋

展开 >

江苏电子信息职业学院,江苏淮安 223003

YOLOv7 水下小目标检测 注意力机制 FPN EIoU

2023年江苏省产学研合作项目

BY20231025

2024

计算机测量与控制
中国计算机自动测量与控制技术协会

计算机测量与控制

CSTPCD
影响因子:0.546
ISSN:1671-4598
年,卷(期):2024.32(9)