首页|基于CNN-A-BiLSTM的无刷直流电机故障诊断方法研究

基于CNN-A-BiLSTM的无刷直流电机故障诊断方法研究

扫码查看
无刷直流电机是大型设备重要的动力装置之一,电机的运行状态与设备的运行状态高度一致;但当前现有的电机故障诊断方法难以在多电机或存在电磁干扰的环境下对电机做出准确的状态判断;为了实现复杂环境的无刷直流电机状态诊断,研究融合了卷积神经网络算法和长短期记忆网络算法;研究通过长短期记忆网络算法的双向传播捕捉复杂环境对电机的影响特征,从而提高模型的诊断精准度;实验结果表明,提出模型在机电设备故障诊断数据集上的平均收敛时间为8。91 min,在电机故障数据集上的平均收敛时间为12。66 min,收敛时间均低于同组对照模型;其次提出模型的F1值为94。17%,比对照模型分别高出4。87%和7。46%;此外,在对电机故障前后电压检测情况对比中,提出模型对电机故障发生时的检测结果更为详细;根据实验结果可以得出,研究提出的电机诊断模型具有优秀的性能,满足电机诊断行业的精准度需求。
Research on Diagnosis Method of Brushless DC Motor Based on CNN-A-BiLSTM
Brushless DC motors are one of important power devices for large equipment,and the operating status of motors is highly consistent with the operating status of equipment.However,current motor fault diagnosis methods are difficult to make accu-rate state judgments on motors in environments with multiple motors or electromagnetic interference.In order to achieve state diagno-sis of brushless DC motors in complex environments,this paper presets the fusion of convolutional neural network(CNN)algorithm and long short-term memory network algorithm.The bidirectional long short-term memory(BiLSTM)propagation network algorithm is adopted to capture the impact of bidirectional propagation environments on the characteristics of the motors,thereby improving the diagnostic accuracy of the model.Experimental results show that the average convergence time of the proposed model on the mechani-cal and electrical equipment fault diagnosis dataset is 8.91 minutes,and the average convergence time on the motor fault dataset is 12.66 minutes,both of which are lower than that of the control model in the same group.Secondly,the F1 value of the proposed model is 94.17%,which is 4.87%and 7.46%higher than that of the control model,respectively.In addition,in the comparison of voltage detection before and after motor faults,the proposed model provides more detailed detection results when motor faults occur.According to experimental results,the proposed motor diagnosis model has excellent performance and meets the requirements of mo-tor fault diagnosis.

CNNbrushless DC motorlong short-term memory networkactivation functionfault diagnosis

覃仕明、马鹏

展开 >

广西壮族自治区特种设备检验研究院,南宁 530200

卷积神经网络 无刷直流电机 长短期记忆网络 激活函数 故障诊断

广西壮族自治区科技计划项目

桂科AB20159008

2024

计算机测量与控制
中国计算机自动测量与控制技术协会

计算机测量与控制

CSTPCD
影响因子:0.546
ISSN:1671-4598
年,卷(期):2024.32(9)
  • 16