计算机测量与控制2024,Vol.32Issue(9) :200-205,240.DOI:10.16526/j.cnki.11-4762/tp.2024.09.028

基于改进机器学习的图书馆机器人自主避障控制研究

Research on Autonomous Obstacle Avoidance Control of Library Robots Based on Improved Machine Learning

李静 罗征 闫振平 张县
计算机测量与控制2024,Vol.32Issue(9) :200-205,240.DOI:10.16526/j.cnki.11-4762/tp.2024.09.028

基于改进机器学习的图书馆机器人自主避障控制研究

Research on Autonomous Obstacle Avoidance Control of Library Robots Based on Improved Machine Learning

李静 1罗征 1闫振平 2张县1
扫码查看

作者信息

  • 1. 西安欧亚学院图文信息中心,西安 710065
  • 2. 北京金盘鹏图软件技术有限公司,北京 100085
  • 折叠

摘要

为控制图书馆机器人在行进过程中自动躲避障碍,达到理想工作效果,提出基于改进机器学习的图书馆机器人自主避障控制方法;采集图书馆机器人与目标障碍物距离信息,感知环境特征向量,当成卷积神经网络输入,经卷积、池化等操作,输出图书馆机器人对当前环境感知结果,该结果经输入输出变量模糊化、模糊推理以及输出变量解模糊等操作后,实现图书馆机器人自主避障无冲突运行;实验结果表明:该方法自主避障控制效果较好,避障行驶距离短,高速运行时反应更快,能够避开多个障碍物,识别分类结果与实际感知环境类型一致.

Abstract

In order to control library robots to avoid obstacles automatically in the process of traveling and achieve an ideal work-ing effect,an autonomous obstacle avoidance control method of library robots based on improved machine learning is proposed.Collect the distance information between the library robot and the target obstacle,perceive the environment feature vector taken as the input of convolutional neural network,and output the perception results of library robots in the current environment after the convolution and pooling.The results are processed through operations such as the input and output variable fuzzification,fuzzy reasoning,and output variable defuzzification,thus implementing autonomous obstacle avoidance and non conflict operation of library robots.Experi-mental results show that this method has the advantages of good autonomous obstacle avoidance control effect,short obstacle avoid-ance driving distance,and faster response when running at high speed.Meanwhile,it can avoid multiple obstacles,and the recogni-tion and classification results are consistent with the actual perceived environmental types.

关键词

改进机器学习/图书馆机器人/自主避障控制/粒子群算法/卷积神经网络/模糊PID算法

Key words

improving machine learning/library robots/autonomous obstacle avoidance control/particle swarm optimization algo-rithm/convolutional neural networks/fuzzy PID

引用本文复制引用

基金项目

西安欧亚学院校级研究项目(2023XJSK05)

出版年

2024
计算机测量与控制
中国计算机自动测量与控制技术协会

计算机测量与控制

CSTPCD
影响因子:0.546
ISSN:1671-4598
参考文献量15
段落导航相关论文