首页|随机缩放混合与跨尺度特征增强的任务对齐目标检测算法

随机缩放混合与跨尺度特征增强的任务对齐目标检测算法

扫码查看
针对TOOD算法鲁棒性差、特征金字塔顶层丢失部分语义信息、不同尺度特征层存在语义差距的问题,提出随机缩放混合与跨尺度特征增强的任务对齐目标检测算法;该算法提出2×4混合增强方法,丰富训练样本,提高模型的泛化性和鲁棒性;构造多重残差特征增强模块,自适应融合顶层不同尺度的上下文信息,减少最高层语义信息的损失;构建堆叠金字塔卷积模块,缩小不同尺度特征层之间的语义差距,提升多尺度特征的融合效果;Pascal VOC数据集上的实验结果表明,所提算法的均值平均精度、查准率、查全率分别比TOOD算法提高了 3。。76%、15。71%、6。28%;而且该算法的F1值与均值平均精度均优于6种主流对比算法。
Task-aligned Object Detection Algorithm Based on Random Scaling Mixture and Cross-Scale Feature Enhancement
Aimed at the disadvantages of poor robustness,some semantic information loss in the top-level feature layer of feature pyramid network in the TOOD algorithm,and existing a semantic gap for feature layers with different scales,a task-aligned object de-tection algorithm based on random scaling mixture and cross-scale feature enhancement is proposed.The 2×4 hybrid augmentation method is used to enrich the training samples,and improve the generalization and robustness of the model.The multiple residual fea-ture enhancement module is constructed to adaptively fuse the context information with different scales at the top level,and reduce the semantic information loss at the highest level.Moreover,the proposed method constructs the stacked pyramid convolution module,reduces the semantic gap among the different scale features,and improves the effect of multi-scale feature fusion.Experimental re-sults on the Pascal VOC data set show that the mean average precision,precision,and recall of the proposed algorithm are 3.76%,15.71%and 6.28%respectively higher than that of the TOOD algorithm.The presented algorithm is superior to six mainstream comparison algorithms in the F1 value and mean average precision.

object detectionTOODscaling mixturefeature enhancementpyramid convolution

王国刚、李佳琪

展开 >

山西大学 物理电子工程学院,太原 030006

目标检测 TOOD 缩放混合 特征增强 金字塔卷积

国家自然科学基金山西省自然科学基金山西省自然科学基金山西省高校科技创新计划山西省高校科技创新计划

11804209201901D111031201901D2111732019L00642020L0051

2024

计算机测量与控制
中国计算机自动测量与控制技术协会

计算机测量与控制

CSTPCD
影响因子:0.546
ISSN:1671-4598
年,卷(期):2024.32(9)