首页|基于图优化DWA算法的智能分拣机器局部运动轨迹最优规划

基于图优化DWA算法的智能分拣机器局部运动轨迹最优规划

扫码查看
智能分拣机器人最优运动轨迹规划对于分拣效率和自动化程度息息相关;研究将以智能分拣机器人为例,创新性对图优化动态窗口方法的局部运动轨迹规划算法进行了分析;该方法首先利用动态窗口方法获取多条轨迹,然后引入避障和增加全局路径、点间距、非完整动力学、加速度、速度等约束到每条运动轨迹,进而创建超图;最后,采用C++软件开源的一般图优化采样生成的运动轨迹,并完成运动轨迹评价,找到最优运动路径;图优化前后DWA的局部运动轨迹规划算法在竖向方向位置的估计误差值较大,最小差值和最大差值分别为0。02 m和3。25 m,对应的时间为345 s和697 s;图优化前后DWA的局部运动轨迹规划算法的估计误差稍微偏大,差值约为0。02 m/s;改进人工势场法的局部路径规划算法、改进时间弹性带的局部路径规划算法的目标运动轨迹重合度依次为72。68%和68。25%;研究设计的图优化DWA的局部运动轨迹规划算法能够更好地实现对障碍物的合理避让,与目标运动轨迹重合度为89。25%;研究成果有效解决了智能分拣机器人最优运动轨迹规划存在的规划效率低等问题,为实际移动机器人的移动控制技术的开发提供新的可能。
Optimal Planning of Local Motion Trajectory for Intelligent Sorting Machines Based on Graph Optimized DWA Algorithm
The optimal motion trajectory planning of intelligent sorting robots is closely related to sorting efficiency and automa-tion level.By taking intelligent sorting robots as an example,a local motion trajectory planning algorithm based on the graph optimi-zation dynamic window approach(DWA)is innovatively analyzed.This algorithm first adopts the dynamic window method to obtain multiple trajectories,and then introduces obstacle avoidance and increases the global path,point spacing,non holonomic dynamics,acceleration,velocity,and other constraints to each motion trajectory,thereby creating the hypergraph.Finally,the general graph with open-source C++software is used to optimize the motion trajectory generated by sampling,achieve the evaluation of the motion trajectory,and find out the optimal motion path.The local motion trajectory planning algorithm of the DWA before and after the graph optimization has a relatively large estimation error in the vertical position,with a minimum and maximum difference of 0.02 m and 3.25 m,respectively,and corresponding time of 345 s and 697 s.The estimation error of the local motion trajectory planning al-gorithm for the DWA before and after graph optimization is slightly larger,with a difference of about 0.02 m/s.The local path plan-ning algorithm for improving the artificial potential field method and the local path planning algorithm for improving the time elastic band have the target motion trajectory overlaps of 72.68%and 68.25%,respectively.The local motion trajectory planning algorithm of the designed graph optimized DWA can better achieve the reasonable avoidance of obstacles,with a coincidence degree of 89.25%for the target motion trajectory.The research results effectively solve low planning efficiency in optimal motion trajectory planning for intelligent sorting robots,providing new possibilities for the development of actual mobile robot movement control technologies.

intelligent sorting robotmobile datamotion trajectoryDWAhypergraphgeneral graph optimization(G2O)

张宇璇、张楠

展开 >

中北大学仪器与电子学院,太原 030051

百信信息技术有限公司,太原 030000

智能分拣机器人 移动数据 运动轨迹 DWA 超图 G2O

2024

计算机测量与控制
中国计算机自动测量与控制技术协会

计算机测量与控制

CSTPCD
影响因子:0.546
ISSN:1671-4598
年,卷(期):2024.32(9)