首页|基于改进YOLOv5s的跌倒行为检测

基于改进YOLOv5s的跌倒行为检测

扫码查看
为了实现电厂人员跌倒行为的实时检测,防止跌倒昏迷而无法被及时发现并救援的事件发生,针对跌倒行为检测实时性以及特征提取能力不足的问题,提出了一种改进YOLOv5s的跌倒行为检测算法网络:在YOLOv5s模型中引入SKAttention注意力模块,使得网络可以自动地利用对分类有效的感受野捕捉到的信息,这种新的深层结构允许CNN在卷积核心上执行动态选择机制,从而自适应地调整其感受野的大小;同时结合ASFF自适应空间融合,并在其中充分利用不同特征,又在算法中引入权重参数,以多层次功能为基础,实现了水下目标识别精度提升的目标;加入空间金字塔池化结构SPPFCSPC,大幅缩短了推理时间;实验结果表明,相比于原始YOLOv5s,新网络在mAP平均精度均值方面提升了 2。1%,查全率提升了 16%;改进后的网络在感知细节和空间建模方面更加强大,能够更准确地捕捉到人员跌倒的异常行为,检测效果有了显著提升。
Falling Behavior Detection Based on Improved YOLOv5s
In order to achieve the real-time detection of fall behavior among power plant personnel,and prevent them from falling and falling into a coma,it cannot be detected and rescued in a timely manner,an improved YOLOv5s falling behavior detection algo-rithm network is proposed to address the issues of insufficient real-time detection and feature extraction capabilities.The introduction of the SKAttention module in the YOLOv5s model enables the network to automatically utilize the information captured by the effec-tive receptive fields for classification.This new deep structure allows the CNN to perform dynamic selection mechanisms on the convo-lutional core,thereby adaptively adjusting the size of its receptive field;By combining adaptively spatial feature fusion(ASFF)and fully utilizing different features,and introducing weight parameters into the algorithm,based on multi-level functions,the accuracy of underwater target recognition is achieved;The spatial pyramid pooling structure with context sensitive pyramid convolution(SPPFC-SPC)is added to greatly reduce inference time.Experimental results show that compared to the original YOLOv5s,the new network improves the mean average precision(mAP)by 2.1%,and the recall rate by 16%.The improved network is more powerful in the perception of details and spatial modeling,and can more accurately capture the abnormal falling behaviors,significantly improving a detection effect.

SKAttention moduleconvolutional Kerneladaptively spatial feature fusion(ASFF)weight parameterspatial pyr-amid pooling

朱正林、钱予阳、马辰宇、王悦炜、史腾

展开 >

南京工程学院能源与动力工程学院,南京 211167

南京工程学院电力工程学院,南京 211167

南京工程学院机械工程学院,南京 211167

SKAttention注意力模块 卷积核 ASFF 权重参数 空间金字塔池化

江苏省产学研合作项目

BY2019013

2024

计算机测量与控制
中国计算机自动测量与控制技术协会

计算机测量与控制

CSTPCD
影响因子:0.546
ISSN:1671-4598
年,卷(期):2024.32(10)