首页|基于双模态门控特征融合的跌倒检测方法

基于双模态门控特征融合的跌倒检测方法

扫码查看
使用单一传感器进行人体跌倒检测的方法不能充分捕捉动作特征,摄像头在光线较差时无法获得高质量图像,毫米波雷达的点云稀疏性降低了远距离目标信息的有效性;针对上述问题,提出了一种基于双模态门控特征融合的跌倒检测方法;使用雷达和摄像头同步检测,雷达分支根据时间—距离图和微多普勒图获得融合特征,视觉分支提取目标的光学特征;将两种特征送入门控融合模块,根据权重整合特征信息,在输出层实现分类;设计了雷达分支和整体网络的相关实验,雷达分支融合方法的平均准确率是91。7%,优于单一特征方法;整体网络的门控融合方法的准确率是94。1%,相比特征相加融合和首尾拼接融合方法分别高出3。0%和1。8%;充分表明该方法能够提升人体跌倒检测的性能。
Falling Detection Method Based on Bi-modal Gated Feature Fusion
A single sensor is used to detect the method for human falling,which cannot adequately capture motion features,cam-eras can not obtain high-quality images under poor lighting conditions,and the point cloud sparsity of millimeter-wave radar reduces the effectiveness of remote target information.To solve these problems,a falling detection method based on bi-modal gated feature fusion is proposed.The method uses a radar and camera to synchronously detect the images.The radar branch obtains the fusion fea-ture based on the time-distance map and micro-Doppler map,and the visual branch extracts the optical feature of the target.The two features are sent to the gated fusion module,and the feature information is integrated according to the weight to realize the classifica-tion at the output layer.Experiments of the radar branch and the overall network are designed,the average accuracy of the radar branch fusion method is 91.7%,which is better than that of the single feature method.The accuracy of the gated fusion method in the overall network is 94.1%,which is 3.0%and 1.8%higher than that of the feature addition fusion and fore-tail fusion,respec-tively.It fully demonstrates that the method can effectively improve the performance of human falling detection.

millimeter-wave radarvisualbi-modalfeature fusiongated fusionfalling detection

郭夏迪、曹炳尧

展开 >

上海大学特种光纤与光接入网重点实验室,上海 200444

毫米波雷达 视觉 双模态 特征融合 门控融合 跌倒检测

上海市科委项目

22511100902

2024

计算机测量与控制
中国计算机自动测量与控制技术协会

计算机测量与控制

CSTPCD
影响因子:0.546
ISSN:1671-4598
年,卷(期):2024.32(10)