首页|高压釜泄漏声音的高频高阶空间交互识别算法研究

高压釜泄漏声音的高频高阶空间交互识别算法研究

扫码查看
高压釜是湿法冶金领域常用的重要设备,存在危险气体泄漏的风险;同时,泄漏会导致高压釜内压不稳,严重时甚至引起爆炸,威胁设备和生产安全;针对高压釜泄漏导致的危险和威胁,提出了一种高压釜泄漏声音的高频高阶空间交互识别算法,用于监测高压釜泄漏发生时的声音,从而及时发现泄漏并采取相应的措施,确保设备和生产安全;该算法首先通过高通滤波器消除低频噪声对于识别结果的干扰,然后利用递归门控卷积块实现高频分量在高阶空间的交互,最后使用全卷积层识别高压釜泄漏的声音;实验结果表明,所提算法具有较好的高压釜泄漏识别效果,平均置信度达到0。93,以0。65作为置信度阈值时,识别准确率可达到99。5%;在处理速度上,算法能够每秒识别60个5秒长的音频文件,满足实时性的需求。
High Frequency and High-Order Spatial Interaction Recognition Algorithm for Autoclave Leaking Voice
An autoclave is important equipment commonly applied in the field of hydrometallurgy,which has a risk of hazardous gas leaks.Additionally,this leak leads to the pressure unstable in the autoclave,potentially causing explosions that threaten both the equipment and production safety.To address this issue,a high frequency high-order spatial interaction recognition algorithm based on the sound of high-pressure autoclave leaks is proposed.This algorithm is used to monitor the sounds associated with autoclave leaks,thus timely detect leaks,and make a decision to ensure equipment and production safety.Firstly,the low-frequency noise interference of the recognition results is eliminated through a high-pass filter.Then,a recursive gated convolutional block is used to achieve the in-teraction of high-frequency components in high-order spatial dimensions.Finally,a fully convolutional layer is utilized to recognize the sound of autoclave leaks.Experimental results demonstrate that the proposed algorithm achieves good recognition results for the leak-age of the autoclave,with an average confidence level of 0.93.The recognition accuracy can reach up to 99.5%,with a confidence threshold of 0.65.During the processing speed,the algorithm can recognize 60 audio files per second,with each file lasting 5 sec-onds,meeting its real-time requirement.

hydrometallurgyautoclaveleak voice recognitionrecursive gated convolution

李衍志、郭丽敏、张维国、古健、宗井彬、张凯、刘君

展开 >

中国恩菲工程技术有限公司,北京 100038

湿-法冶金 高压釜 泄漏声音识别 递归门控卷积

国家重点研发计划

2022YFB3304901

2024

计算机测量与控制
中国计算机自动测量与控制技术协会

计算机测量与控制

CSTPCD
影响因子:0.546
ISSN:1671-4598
年,卷(期):2024.32(10)