首页|基于改进蜣螂算法的多区域空调系统需求响应DMPC供冷策略

基于改进蜣螂算法的多区域空调系统需求响应DMPC供冷策略

扫码查看
针对夏季电网高峰期间办公建筑空调系统的峰值负荷造成电网短缺等问题,提出一种基于需求响应的多区域空调系统分布式模型预测控制(DMPC)供冷策略;以西安市某办公建筑的5个区域为研究对象,分别建立该办公建筑的物理模型及空调系统能耗数学模型,并验证模型的准确性;构建多区域空调系统仿真模型,优化目标为最小化空调系统运行能耗和室温与设定值的误差最小;选取蜣螂算法作为优化工具,并针对该算法存在全局搜索速度慢、易早收敛和陷入局部最优等缺点;采取混沌映射策略优化种群初始化,生成更加均匀的种群以提升种群个体质量;利用螺旋搜索策略对蜣螂的觅食和繁殖行为进行更新,进一步扩展算法的全局搜索性;同时引入随机扰动和自适应因子改进蜣螂的偷窃行为,改善算法易陷入局部最优等问题;运用改进后的蜣螂算法对DMPC的滚动优化进行优化求解,并与PID温度反馈控制进行对比,验证DMPC的控制性能;实验结果表明,在所研究的5个区域中,DMPC比PID控制方法的响应速度分别提升了 8。91、8。65、12。04、5。79和1。79%;结合需求响应策略利用分时电价进行调控,提出温度与启停优化调控策略对空调系统的峰值负荷进行削峰转移;结果表明两种预冷启停优化策略的峰时负荷转移率分别为27。29%和29。16%,可以有效地将系统高峰时段的冷负荷转移到其他时段,降低电网运行压力。
DMPC Cooling Strategy with Demand Response for Multi-Zone Air Conditioning Systems Based on Improved Dung Beetle Algorithm
To address the issue of power grid shortage caused by the peak load of building air conditioning systems during the peak period of the summer,a demand response-based distributed model predictive control(DMPC)cooling strategy for multi-zone systems was proposed.A physical model and a mathematical model of energy consumption for the air conditioning systems were established in five zones of an office building in Xi'an,and the accuracy of the models was verified.A simulation model for muti-zone air conditioning system was constructed,the optimization objective was to minimize the operational energy consumption of air conditioning systems and minimize the error between the room temperature and the set value.The dung beetle algorithm was selected for optimization,overco-ming the shortages of its slow global search,premature convergence,and susceptibility to local optima,the chaotic mapping strategy was used to optimize the population initialization,and generate a more uniform population to improve the individual quality of the pop-ulation.helical search strategies for foraging and breeding behaviors were updated to further expand the global search of the algo-rithm,and the random perturbations with adaptive factors were introduced to improve the exploratory behavior and susceptibility to local optima.The dung beetle algorithm improved the rolling optimization of the DMPC,and compared with the PID control method with temperature feedback,the control performance of the DMPC was validated.Experimental results show that the response speeds of the DMPC are increased by 8.91,8.65,12.04,5.79,and 1.79%than that of the PID method in the respective zones,respective-ly.Additionally,combined with the demand response strategies,electricity prices are regulated time of use,which proposes the tem-perature and start-stop optimization strategies to shift peak loads of the air conditioning systems,the results indicate that the peak load transfer rates of the two pre cooling start-stop optimization strategies are increased by 27.29%and 29.16%,respectively,effec-tively redistributing peak cooling loads to off-peak periods and alleviating pressure in the power grid.

demand responsepeak shaving or load shiftingdistributed model predictive controlimproved dung beetle optimi-zation algorithmenergy saving optimization

王鑫洋、闫秀英、吴晓雪、侯帅旗

展开 >

西安建筑科技大学建筑设备科学与工程学院,西安 710055

需求响应 削峰转移 分布式模型预测控制 改进的蜣螂优化算法 节能优化

国家自然科学基金面上项目陕西省自然科学基础研究基金陕西省建设厅科技计划发展项目

522781252022JM-2832020-K17

2024

计算机测量与控制
中国计算机自动测量与控制技术协会

计算机测量与控制

CSTPCD
影响因子:0.546
ISSN:1671-4598
年,卷(期):2024.32(10)