计算机测量与控制2024,Vol.32Issue(10) :284-290.DOI:10.16526/j.cnki.11-4762/tp.2024.10.040

基于多尺度半耦合卷积稀疏编码的遥感地貌影像纹理识别方法

Texture Recognition Method of Remote Sensing Landform Image Based on Multi-Scale Semi-Coupled Convolutional Sparse Coding

王忠丰 范宝国
计算机测量与控制2024,Vol.32Issue(10) :284-290.DOI:10.16526/j.cnki.11-4762/tp.2024.10.040

基于多尺度半耦合卷积稀疏编码的遥感地貌影像纹理识别方法

Texture Recognition Method of Remote Sensing Landform Image Based on Multi-Scale Semi-Coupled Convolutional Sparse Coding

王忠丰 1范宝国2
扫码查看

作者信息

  • 1. 中国人民解放军92493部队52分队,辽宁 葫芦岛 125000
  • 2. 中国人民解放军31698部队51分队,辽宁葫芦岛 125000
  • 折叠

摘要

遥感地貌影像通常包含大量的数据,具有高度的复杂性和多样性,难以捕捉到不同层次的纹理信息,从而影响识别效果;因此,为提高纹理特征提取的效果,确保识别精度,采用多尺度半耦合卷积稀疏编码对遥感地貌影像纹理识别进行了研究;去除遥感地貌影像噪声,增强遥感地貌影像整体质量,通过分水岭算法分割遥感地貌影像,探究不同尺度下遥感地貌影像纹理特征区别,以有效捕捉到不同层次的纹理信息,提高遥感地貌影像纹理的识别性能;然后应用灰度共生矩阵(GLCM)获取遥感地貌影像的多尺度纹理特征,构建半耦合卷积稀疏编码模型,完成多尺度纹理特征提取过程的学习与多尺度纹理特征的有效融合,以能够在保持特征丰富性的同时,减少冗余信息,提高纹理识别的准确性;选取适当的分类器——朴素贝叶斯分类器,并对其进行训练;并以此为基础,制定遥感地貌影像纹理识别程序,执行制定程序即可获取地貌纹理识别结果;测试结果显示:应用提出方法获得的遥感地貌影像处理结果清晰度与对比度较高,地貌纹理特征提取结果更加完整与清晰,地貌纹理识别结果与实际结果一致,充分证实了提出方法应用效果更好.

Abstract

Remote sensing landform images usually contain a large amount of data,which is highly complex and diverse,making it difficult to capture texture information at different levels,thereby affecting recognition performance.Therefore,in order to improve the effectiveness of texture feature extraction and ensure recognition accuracy,multi-scale semi coupled convolutional sparse encoding was used to study the texture recognition of remote sensing topographic images.To remove noise from remote sensing landform ima-ges,enhance the overall quality of remote sensing landform images,use watershed algorithm to segment remote sensing landform im-ages,explore the differences in texture features of remote sensing landform images at different scales,effectively capture texture in-formation at different levels,and improve the recognition performance of texture in remote sensing landform images.Then,the gray level co-occurrence matrix(GLCM)is applied to obtain multi-scale texture features of remote sensing geomorphic images,and a semi coupled convolutional sparse encoding model is constructed to complete the learning of multi-scale texture feature extraction process and effective fusion of multi-scale texture features,in order to reduce redundant information and improve the accuracy of texture rec-ognition while maintaining feature richness.Select an appropriate classifier-Naive Bayes classifier and train it.Based on this,develop a remote sensing landform image texture recognition program,and execute the program to obtain the landform texture recognition re-sults.The test results show that the remote sensing landform image processing results obtained by the proposed method have high clarity and contrast,and the terrain texture feature extraction results are more complete and clear.The terrain texture recognition re-sults are consistent with the actual results,fully confirming that the proposed method has better application effect.

关键词

多尺度纹理特征/影像分割/半耦合结构/遥感地貌影像/卷积稀疏编码/纹理识别

Key words

multi-scale texture features/image segmentation/semi-coupled structure/remote sensing landform image/convolu-tional sparse coding/texture recognition

引用本文复制引用

出版年

2024
计算机测量与控制
中国计算机自动测量与控制技术协会

计算机测量与控制

CSTPCD
影响因子:0.546
ISSN:1671-4598
段落导航相关论文