首页|基于YOLOv7的垃圾检测方法研究

基于YOLOv7的垃圾检测方法研究

扫码查看
随着社会经济的发展,人们的生活水平持续提高,生活垃圾量急剧攀升;为了有效应对垃圾分拣效率低、准确率差等问题,提出一种以YOLOv7网络为基础模型的垃圾检测算法;该算法对YOLOv7网络进行了一系列改造,首先,在Head模块添加了注意力机制Sim AM,增强了模型的感知能力和自适应能力,从而提高检测精度;其次,在主干网络中改进了非极大值抑制算法(soft-NMS)去除冗余的检测框,再次改进了损失函数为边框回归损失函数SIoU,提高了检测的精度和速度;最后,采用C3模块替换YOLOv7有的ELAN-W模块,提升网络对较小目标的检测能力;通过数据集对改进的网络进行测试,平均准确度为98。93%,高于原模型的96。31%,实验结果也表明改进算法的检测效果有较为明显的提升。
Research on Garbage Detection Method Based on YOLOv7
With the development of social economy and the continuous improvement of people's living standard,the amount of do-mestic garbage has rapidly increased.In order to effectively deal with the low efficiency and poor accuracy of garbage sorting,a gar-bage detection algorithm based on YOLOv7 network as a base model is proposed.The algorithm made a series of modifications to the YOLOv7 network,firstly,the attention mechanism SimAM was added to the head module,which enhanced the model's perceptual a-bility and adaptive ability so as to improve the detection accuracy;Secondly,non-maximum suppression(soft-NMS)was replaced in the backbone network to remove redundant detection frames;Then,the loss function was improved to be the edge regression loss function SIoU,improving the accuracy and speed of detection;Finally,the C3 module was used to replace the ELAN-W module in the YOLOv7,promoting the network's detection ability for smaller targets.Through experiment on the data-set,the average accuracy of the improved network is 98.93%,which is better than the 96.31%of the original model.Experimental results show that the im-proved algorithm has a more obvious enhancement in detection.

deep learningtarget detectionattention mechanismnon maximum suppressiongarbage classification

陈君、赵小会、王博士、季虹、李维乾

展开 >

西安工程大学计算机科学学院陕西省服装设计智能化重点实验室,西安 710048

深度学习 目标检测 注意力机制 非极大值抑制 垃圾分类

2024

计算机测量与控制
中国计算机自动测量与控制技术协会

计算机测量与控制

CSTPCD
影响因子:0.546
ISSN:1671-4598
年,卷(期):2024.32(12)