首页|基于改进YOLOv7的室内摔倒行为检测

基于改进YOLOv7的室内摔倒行为检测

扫码查看
针对室内监控视频中老年人摔倒行为的检测问题,提出一种基于改进YOLOv7网络模型的实时摔倒行为检测算法;基于YOLOv7的目标检测模型传统使用跨步卷积来实现下采样特征,但这可能会使目标信息的特征模糊;为了解决这个问题,引入了新的下采样模块——鲁棒特征下采样,以改善下采样过程中目标信息特征的清晰度;此外,通过在网络的concat部分引入CoordAttention注意力机制,可更好地融合拼接后的特征图;实验结果表明,改进后的YOLOv7模型在摔倒行为检测方面具有较高的准确率和检测性能,准确率达到98。88%,mAP50值达到98。83%,mAP50∶95值达到74。12%;这意味着该算法可以准确地检测老年人的摔倒行为,家人能够及时地发现,以便及时采取必要的救助措施。
Indoor Falling Behavior Detection Algorithm Based on Improved YOLOv7
To address the problem of detecting falls for the elderly people in indoor surveillance video,a real-time fall behavior de-tection algorithm based on improved YOLOv7 network model was proposed.the strided convolution is traditionally used in the target detection model based on YOLOv7 to realize the downsampling feature,but this perhaps make the feature of the target information fuzzy.To solve this problem,a novel downsampling module,robust feature downsampling,is introduced to improve the clarity of target information features during downsampling.In addition,by introducing the Coord Attention attention mechanism in the concat section of the network,the spliced feature graphs can be better merged.Experimental results show that the improved YOLOv7 model has a high accuracy and detection performance in falling behavior detection,with an accuracy of 98.88%,mAP50 value of 98.83%,and mAP50∶95 value of 74.12%.This means that the algorithm can accurately detect the fall behavior of the elderly,so the family should promptly discover and make necessary rescue measures in a timely manner.

falling detectionYOLOv7 network modeldownsamplingrobust feature downsamplingCoordAttention attention mechanism

陈华艳、张晓滨

展开 >

西安工程大学计算机科学学院,西安 710048

摔倒检测 YOLOv7网络模型 下采样 鲁棒特征下采样 CoordAttention注意力机制

2024

计算机测量与控制
中国计算机自动测量与控制技术协会

计算机测量与控制

CSTPCD
影响因子:0.546
ISSN:1671-4598
年,卷(期):2024.32(12)