首页|基于二维特征和CNN分析的无人机操控员情绪状态检测

基于二维特征和CNN分析的无人机操控员情绪状态检测

扫码查看
为了实时检测无人机操控员的情绪状态,提出了一种基于二维特征和卷积神经网络(CNN)分析的无人机操控员情绪状态检测算法;针对脑电信号(EEG)中眼电伪迹干扰的问题,设计实现了一种基于二阶盲辨识(SOBI)的去除伪迹算法;针对其它模型检测率低的问题,通过微分熵特征(DE)提取、2-DMapping映射及稀疏运算将一维脑电信号转化为包含情感信息的二维特征图,并对脑电信号进行扩增处理,提出二维特征图与CNN相结合的方式,使得各通道的情感特征相互关联;利用CNN自动学习深层次特征的优势,深度挖掘二维特征图里的脑电情感信息,较好地实现了无人机操控员积极、中性以及消极三种情绪状态检测。
The Emotional Status Testing of UAV Operator Based on the Two-dimensional Feature Maps and CNN
In order to detect the emotional state of the UAV operator in real time,a UAV operator emotional state detection algo-rithm analyzed based on the Two-dimensional Feature Maps and Convolutional Neural Network(CNN).Aiming at the problem of the interference comes from ocular artifacts in electroencephalogram signals(EEG),a removal algorithm of the Second Order Blinding I-dentification(SOBI)is designed.For the problems of low detection rates of other models,extraction of one-dimensional brain electri-cal signal into a two-dimensional special symbol with emotional information through the Differential Entropy(DE)extraction,2-D Mapping mapping and sparse computing,and the electrical signal is converted into emotional information.The amplification treatment is performed,and the method of combining the Two-dimensional Feature Maps with CNN is proposed to make the emotional charac-teristics of each channel interconnected.Using CNN to automatically learn the advantages of deep-level characteristics,and deeply ex-cavate the emotional information of the Electrical Electricity in the Two-dimensional Feature Maps,it has better realized the three e-motional states of the UAV operator positive,neutrality and negative emotional state.

electroencephalogram signalssecond order blinding identificationconvolutional neural networktwo-dimensional featureocular artifactsemotion recognition

杨宇超、刘聪

展开 >

空军工程大学航空机务士官学校,河南信阳 464000

EEG SOBI CNN 二维特征 眼电伪迹 情绪状态检测

2024

计算机测量与控制
中国计算机自动测量与控制技术协会

计算机测量与控制

CSTPCD
影响因子:0.546
ISSN:1671-4598
年,卷(期):2024.32(12)