首页|基于ARM架构和多信号采集融合的智能物流机器人控制系统设计

基于ARM架构和多信号采集融合的智能物流机器人控制系统设计

扫码查看
针对智能物流机器人动态定位偏差较大、最优路径优化缺陷问题,提出一种基于欧式分割去噪和三边定位理论的智能物流机器人控制系统;控制系统采用ARM嵌入式主板作为控制核心,集成高速数据处理单元和实时操作系统;通过欧式分割算法对激光雷达扫描数据进行去噪,并结合位置拟合技术以期提高动态定位的准确性;路径选择以及避障规划方面,系统利用ARM嵌入式主板的高效计算能力,确保路径决策的优越性以及避障规划的及时响应;为验证研究用控制系统的性能,在实际物流仓库环境中进行对比实验;实验结果表明,在进行轨迹规划和避障任务时,系统的响应时间比现有系统平均快20%,其在进行长时间运行测试中,路径偏差减少了30%,也即研究用系统具备更好的精确性以及实时性。
Intelligent Logistics Robot Control System Based on ARM Architecture and Multi-Signal Acquisition Fusion
In order to solve the problems of large dynamic positioning deviation and optimal path optimization defect for intelligent logistics robot,an intelligent logistics robot control system based on Euclidean segmentation denoising and trilateral positioning theory was proposed.The control system adopts ARM embedded motherboard as the control core,integrating the high-speed data processing unit and the real-time operating system.The Euclidean segmentation algorithm is used to denoise the lidar scanning data,and the po-sition fitting technology is combined to improve the accuracy of dynamic positioning.In terms of path selection and obstacle avoidance planning,the system uses the efficient computing power of the ARM embedded motherboard to ensure the superiority of path deci-sion-making and the timely response of obstacle avoidance planning.In order to verify the performance of the control system,a com-parative experiment was carried out in an actual logistics warehouse environment.Experimental results show that with the trajectory planning and obstacle avoidance tasks,the response time of the system is 20%faster than that of the existing system on average,and the path deviation is reduced by 30%in the long-term operation test,indicating that the system has a better accuracy and real-time performance.

intelligent logistics robotARM embedded motherboardEuropean segmentationposition fittingpath selectionpath correction

高铱聪、苏凯

展开 >

西安职业技术学院现代商学院,西安 710077

百世物流科技(中国)有限公司,西安 710000

智能物流机器人 ARM嵌入式主板 欧式分割 位置拟合 路径选择 路径纠偏

2024

计算机测量与控制
中国计算机自动测量与控制技术协会

计算机测量与控制

CSTPCD
影响因子:0.546
ISSN:1671-4598
年,卷(期):2024.32(12)