首页|基于模糊自适应整定PID控制的机器人路径跟踪方法设计

基于模糊自适应整定PID控制的机器人路径跟踪方法设计

扫码查看
常规机器人路径跟踪算法在机器人运动过程中无法实时调整PID控制器的参数,导致机器人的路径跟踪性能较差;为解决这一问题,提出了机器人路径跟踪的模糊自适应整定(PID)算法设计;首先构建机器人系统模型,计算机器人的运动航向角,并根据机器人测量系统利用基准坐标系中的离散坐标来描述机器人在运动过程中的曲面法向量;然后结合转动离散惯性系数对路径特征点进行匹配;基于此基础,引入模糊自适应整定PID算法设计控制器,通过优化控制器的内部参数,调整控制器的增益输出,从而实现机器人的路径跟踪;实例应用结果表明,该方法能够准确跟踪机器人的移动路径,路径跟踪偏移较小,路径偏移量始终维持在0。5个单位以下;跟踪性能较好,其F1值更加接近于1。
Method for Robot Path Tracking Based on Fuzzy Adaptive Tuning PID Control
Conventional robot path tracking algorithms cannot adjust the parameters of Proportional Integral Derivative(PID)controller in real-time during robot motion,resulting in poor path tracking performance of robots.To solve this problem,a fuzzy a-daptive tuning PID algorithm for robot path tracking is proposed.Firstly,construct the robot system model,calculate the robot's mo-tion heading angle,and describe the surface normal vector of the robot during motion using discrete coordinates in the reference coor-dinate system based on the robot measurement system.Then,the path feature points are matched by combining the rotational discrete inertia coefficient.Based on this,the fuzzy adaptive tuning PID algorithm is introduced to design a controller.By optimizing the inter-nal parameters of the controller and adjusting its gain output,the robot's path tracking is achieved.The application results of the ex-ample show that this method can accurately track the movement path of the robot,with a small path tracking offset and a path offset of below 0.5 units.It has a good tracking performance is good,and itsF1value is closer to 1.

fuzzy adaptive tuning PIDrobotspath trackingexpected pathtracking offsetdiscrete inertia coefficient

赵慧敏

展开 >

石家庄市教育信息化管理中心,石家庄 050000

模糊自适应整定PID 机器人 路径跟踪 期望路径 跟踪偏移量 离散惯性系数

2024

计算机测量与控制
中国计算机自动测量与控制技术协会

计算机测量与控制

CSTPCD
影响因子:0.546
ISSN:1671-4598
年,卷(期):2024.32(12)