首页|基于改进YOLOv5s的输电通道下的烟雾识别

基于改进YOLOv5s的输电通道下的烟雾识别

扫码查看
针对输电通道下出现火灾险情而难以及时发现的问题,能够在火灾初期发现形状不规则且稀薄的烟雾的产生,对于险情的控制具有重要作用;为解决此问题,提出了改进YOLOv5s网络的烟雾识别算法;该方法通过在YOLOv5s模型中引入卷积注意力模块(CBAM),提高了对外轮廓并不明显的烟雾的特征提取能力;同时引入CARAFE特征上采样算法,扩大感知域,利用图片中的其他信息帮助捕捉烟雾的深层特征;为捕捉到图像中目标较小的烟雾形态,利用FReLU替换原有激活函数SiLU,用二维漏斗激活函数,在引入少量计算和过拟合风险的情况下来对网络空间中的不敏感信息进行激活,进而改善视觉任务;实验结果表明,该项目改进后的检测效果相对于原始YOLOv5s网络中的查准率提高了6。8%,查全率提高了2。8%,平均精度均值提高了2。3%,检测精度提升较为明显,更有利于应用于实际情况下的烟雾检测。
Smoke Recognition Under Transmission Channel Based on Improved YOLOv5s
In response to the challenge of detecting fire hazards in power transmission corridors in a timely manner,especially in the early stages of a fire when irregular and thin smoke is difficult to be detected,which is of great significance for controlling danger-ous situations.To solve this issue,an improved smoke recognition algorithm for YOLOv5s network is proposed.A Convolutional Block Attention Module(CBAM)is introduced into the YOLOv5s model to extract the features of smoke with less distinct outlines.Additionally,the CARAFE feature upsampling algorithm is incorporated to expand the perception field and leverage other image in-formation for capturing deep smoke features.To capture smaller smoke patterns in the images,the Sigmoid Linear Unit(SiLU)is re-placed with the original activation function Funnel ReLU(FReLU),a two-dimensional funnel-shaped activation function is used to ac-tivate insensitive information in the network space while introducing minimal computational overhead and overfitting risks,thereby en-hancing visual task performance.Experimental results demonstrate that the improved algorithm in this project increases the precision by 6.8%,the recall rate by 2.8%,and the mean average precision by 2.3%relative to the original YOLOv5s network.This signifi-cant enhancement in detection accuracy makes it more suitable for practical smoke detection applications.

transmission channelmachine visiondeep learningattention moduleYOLOv5s

刘昶、孟琳、焦良葆、黄国恒、吴继薇

展开 >

南京工程学院人工智能产业技术研究院,南京 211167

江苏省智能感知技术与装备工程研究中心,南京 211167

输电通道 机器视觉 深度学习 注意力模块 YOLOv5s

2024

计算机测量与控制
中国计算机自动测量与控制技术协会

计算机测量与控制

CSTPCD
影响因子:0.546
ISSN:1671-4598
年,卷(期):2024.32(12)