首页|基于自适应注意力机制的轻量化语义分割网络

基于自适应注意力机制的轻量化语义分割网络

扫码查看
针对语义SLAM中语义分割速度较慢,实时性较低、占用资源过多等问题,提出一种含有自适应通道注意力机制的轻量级Mask R-CNN网络,由于原有的语义分割网络里的残差网络复杂,且应用环境在室内,环境较为简单,故该轻量级网络将原有复杂的主干网络中的ResNet-50利用深度可分离卷积与分组卷积改进为更加轻量的ResNet-DS-tiny,并加入自适应通道注意力机制提升网络精度;在自适应通道注意力模块中,利用加权方式对输入的RGB-D图像从空间和通道赋予不同的权重,增强了特征的表达能力;此外,为了轻量化特征金字塔,使用不同空洞率的空洞卷积来提取不同大小感受野的特征信息,有效地获取了多尺度的特征;相较于传统的特征金字塔,空洞卷积减少了参数量;在更充分获取RGB信息特征的同时,提升了语义分割系统的实时性并减少了资源占用。
Lightweight Semantic Segmentation Network Based on Adaptive Attention Mechanism
To address the issues of slow semantic segmentation speed,low real-time performance,and high resource consumption in semantic SLAM,a lightweight Mask R-CNN network with an adaptive channel attention mechanism is proposed.Given the com-plexity of the residual networks in existing semantic segmentation networks and the relatively simple indoor application environments,this lightweight network replaces the original complex backbone ResNet-50 with a more lightweight ResNet-DS-tiny by incorporating depthwise separable convolutions and grouped convolutions.An adaptive channel attention mechanism is also introduced.In the adap-tive channel attention module,a weighted approach is used to assign different weights to the input RGB-D images from both spatial and channel dimensions,thereby enhancing the feature representation capability.Additionally,to lighten the feature pyramid,dilated convolutions are employed to expand the receptive field,effectively aggregating multi-scale features with different dilation rates.Com-pared to traditional feature pyramids,the use of dilated convolutions reduces the number of parameters.This approach not only more effectively captures RGB information features but also improves the real-time performance of the semantic segmentation system while reducing resource consumption.

indoor semantic segmentationlightweight networkattention mechanismdilated convolution

王艳莉、连晓峰、康毛毛

展开 >

北京工商大学计算机与人工智能学院,北京 100048

室内语义分割 轻量化网络 注意力机制 空洞卷积

2024

计算机测量与控制
中国计算机自动测量与控制技术协会

计算机测量与控制

CSTPCD
影响因子:0.546
ISSN:1671-4598
年,卷(期):2024.32(12)