首页|基于近红外光谱的天然牧草CNCPS组分分析与预测

基于近红外光谱的天然牧草CNCPS组分分析与预测

扫码查看
从青海省河南县高山嵩草草地采集天然牧草样品66个,研究近红外光谱技术测定天然牧草净碳水化合物和净蛋白质体系( CNCPS)组分的可行性。选用修正的偏最小二乘法( MPLS)建模,筛选最佳的光谱和数学处理方法,建立了天然牧草中粗蛋白质( CP)、可溶性蛋白质( SP)、非蛋白氮( PA)、快速降解真蛋白( PB1)、中速降解真蛋白(PB2)、慢速降解真蛋白(PB3)、结合粗蛋白(PC)和中性洗涤纤维(NDF)、酸性洗涤纤维(ADF)、酸性洗涤木质素(ADL)、总碳水化合物(CHO)、非结构性碳水化合物(CNSC)、糖类(CA)、淀粉和果胶(CB1)、可利用纤维( CB2)、不可利用纤维( CC)等的近红外定量分析模型。结果显示,CP、PC、NDF、ADF、CHO、CNSC、CA的交叉验证决定系数(1-VR)分别为0.989、0.870、0.975、0.932、0.964、0.966、0.846,交叉验证相对分析误差( RPDCV)分别为9.336、2.913、6.353、3.758、5.306、5.521、2.603,其他指标的1-VR均小于0.9,RPDCV均小于2.5。可见,近红外技术可以用于天然牧草CNCPS组分快速测定,CP、PC、NDF、ADF、CHO、CNSC、CA含量预测模型的预测能力较好,PA、PB1、PB2、PB3、CB1、CB2、CC含量预测模型需要进一步研究以提高精度。
Analysis and prediction of natural pasture CNCPS (cornell net carbohy-drate and protein system) components by near infrared reflectance spec-troscopy (NIRS)
Sixty-six samples collected from alpine grassland of Kobresia hastily in Henan county, Qinghai province were used to investigate the feasibility of predicting the CNCPS ( cornell net carbohydrate and protein system) composition of natural pasture by near infrared reflectance spectroscopy (NIRS). Using modified partial least squares (MPLS) regression method, the models of CP(crude protein), SP(soluble protein), PA(non-protein nitrogen), PB1(rapidly degradable crude protein), PB2(intermediately degradable crude protein), PB3(slowly degradable crude protein), PC(bound crude protein), and models of NDF( neutral detergent fiber) , ADF( acid detergent fiber) , ADL( acid detergent lignin) , CHO( total carbohy-drate ) , CNSC ( non-structural carbohydrates ) , CA (sugars), CB1(starch and pectin), CB2(available fiber), CC(not available fiber) were built. The results showed 1-VR ( cross validation determination coefficient) for CP, PC, NDF, ADF, CHO, CNSC, and CA were 0. 989, 0. 870, 0. 975, 0. 932, 0. 964, 0. 966 and 0. 846, respectively, and RPDCV ( ratios of standard deviation of reference analysis data to SECV) were 9. 336, 2. 913, 6. 353, 3. 758, 5. 306, 5. 521, and 2. 603, respectively. Models with 1-VR less than 0. 9 and RPDCV less than 2. 5 were not ideal. The results indicated that CNCPS components of natural pasture could be fastly and accurately predicted by NIRS, and the models established were applicable for the predictions of CP, PC, NDF, ADF, CHO, CNSC and CA. Further studies should be focusing on improving the precision of the models for PA, PB1 , PB2 , PB3 , CB1 , CB2 , and CC.

near infrared reflectance spectroscopy(NIRS)natural pasturecornell net carbohydrate and protein system(CNCPS)nutritional value

杜雪燕、王迅、柴沙驼、刘书杰

展开 >

青海大学/青海省高原放牧家畜营养与饲料科学重点实验室/青海高原牦牛研究中心,青海 西宁 810016

近红外光谱技术(NIRS) 天然牧草 CNCPS组分 营养价值

公益性行业(农业)科研专项国家自然科学基金(地方科学基金)项目

201303062-141461081

2015

江苏农业学报
江苏省农业科学院

江苏农业学报

CSTPCDCSCD北大核心
影响因子:1.093
ISSN:1000-4440
年,卷(期):2015.(5)
  • 4
  • 10