首页|基于卷积神经网络的轻量级水稻叶片病害识别模型

基于卷积神经网络的轻量级水稻叶片病害识别模型

扫码查看
水稻病害一直是影响水稻产量的重要因素之一,为了快速、准确地检测水稻病害,本研究提出了一种基于卷积神经网络的轻量级水稻叶片病害识别模型.首先,从参数量的角度对注意力机制进行改进,得到轻量级注意力机制模块,对水稻叶片病害特征图中的潜在注意力信息进行深度挖掘;其次,使用深度可分离卷积代替部分标准卷积,进一步降低模型的参数量;最后,为了提高模型的泛化能力,让模型学习过程更快、更稳定,采用了自带内部归一化属性的扩展型指数线性单元函数(SELU)与外部组归一化模块相结合的方法.通过在公共数据集中进行验证,本研究构建模型的平均精度最高(0.990 0),模型在参数量和平均单次迭代时间方面也有一定优势,与其他模型相比,具有相对较好的性能.
A lightweight rice leaf disease recognition model based on convolutional neural network
Rice diseases have always been one of the important factors affecting rice yield.In order to quickly and accurately detect rice diseases,this study proposed a lightweight rice leaf disease recognition model based on convolutional neural network.Firstly,from the perspective of the number of parameters,the attention mechanism was improved to obtain a lightweight attention mechanism module,and the potential attention information in the rice leaf disease feature map was deeply mined.Secondly,the depthwise separable convolution was used to replace some standard convolutions to further re-duce the parameters of the model.Finally,in order to improve the generalization ability and make the model learning process faster and more stable,a method of combining the scaled exponential linear unit(SELU)activation function with internal normalization attribute and the external group normalization module was adopted.By verifying in the public data set,the average accuracy of the model constructed in this study was the highest(0.990 0).The model also had certain advantages in terms of parameter quantity and aver-age single iteration time.Compared with other models,it had relatively higher performance.

rice diseasegroup normalizationactivation functionsdepthwise separable convolutionat-tention mechanism

陆煜、俞经虎、朱行飞、张不凡

展开 >

江南大学机械工程学院,江苏 无锡 214122

江苏省食品先进制造装备技术重点实验室,江苏 无锡 214122

水稻病害 组归一化 激活函数 深度可分离卷积 注意力机制

国家自然科学基金项目江苏省先进食品制造装备与技术重点实验室资助项目

51375209FMZ201901

2024

江苏农业学报
江苏省农业科学院

江苏农业学报

CSTPCD北大核心
影响因子:1.093
ISSN:1000-4440
年,卷(期):2024.40(2)
  • 16