首页|基于零样本学习的枸杞虫害识别

基于零样本学习的枸杞虫害识别

扫码查看
针对农业领域缺少有效的零样本虫害识别与检索方法,本研究提出一种基于零样本学习的枸杞虫害检索与识别方法.首先,通过对原始数据进行深层矩阵分解获得深层次结构特征,获取不同模态数据的特征表示,生成各模态的哈希码.然后结合类别属性信息对生成的哈希码引入线性约束,实现已知类别到新类别之间的知识迁移.最后,对所提出的模型通过直接学习离散哈希码避免了连续松弛方法带来的量化误差,提高了检索精度.在2020 年宁夏枸杞虫害图文跨模态检索数据集及Wiki、Pascal VOC这 3 个公开数据集上的试验结果表明,与现有的基于协同矩阵分解的哈希方法(CMFH)、基于潜在语义的稀疏哈希方法(LSSH)、基于迁移监督知识的哈希方法(TSK)、基于属性的哈希方法(AH)、基于跨模态属性的哈希方法(CMAH)、基于正交投影的哈希方法(CHOP)、离散非对称零样本哈希方法(DAZSH)相比,本研究所提出的方法具有优越性.
Identification of Lycium barbarum pests based on zero-shot learning
In order to solve the problem of lack of effective zero-sample recognition and retrieval methods in agricul-tural field,a zero-sample learning-based retrieval and recognition method for Lycium barbarum pests was proposed in this study.Firstly,the deep structure features were obtained by deep matrix decomposition of the original data,and the charac-teristic representations of different modal data were obtained,and the hashing codes of each modality were generated.Then the linear constraint was introduced to the generated hashing code with the class attribute information to realize the knowl-edge transfer from the known class to the new class.Finally,the proposed model could avoid the quantization error caused by the continuous relaxation method and improve the retrieval precision by learning discrete hashing codes directly.The ex-perimental results on the three public datasets,2020 Ningxia Lycium barbarum pest image-text cross-modal retrieval data-set,Wiki,Pascal VOC,showed that the method proposed in this study was superior to the existing collective matrix factori-zation hashing(CMFH),latent semantic sparse hashing(LSSH),transferring supervised knowledge hashing(TSK),attribute hashing(AH),cross-modal attribute hashing(CMAH),cross-modal hashing with orthogonal projection(CHOP),and discrete asymmetric zero-shoot hashing(DAZSH).

zero-shot learningmatrix factoriza-tionLycium barbarum pests detectionhashing code

宋文韬、姜茹月、舒欣

展开 >

南京农业大学人工智能学院,江苏 南京 210095

零样本学习 矩阵分解 枸杞病虫害识别 哈希码

国家自然科学基金项目江苏省信息技术处理重点实验室开放课题项目

61602248KJS2164

2024

江苏农业学报
江苏省农业科学院

江苏农业学报

CSTPCD北大核心
影响因子:1.093
ISSN:1000-4440
年,卷(期):2024.40(2)
  • 26