首页|基于注意力机制轻量化模型的植物病害识别方法

基于注意力机制轻量化模型的植物病害识别方法

扫码查看
针对现有植物病害识别模型存在响应速度慢、参数量多、计算机内存资源消耗大等问题,本研究提出了一种轻量化神经网络模型,该模型由特征提取层、特征增强层和分类器组成.为了减小模型大小并提高网络响应速度,在特征提取层中使用深度可分离卷积进行特征提取.为了防止网络传播过程中的梯度消失并增强病害像素特征融合,在特征提取层中引入了大卷积核倒置残差结构(IRBCKS)模块.此外,在特征增强层集成了轻量级卷积块注意力模块(CBAM)注意力机制,以捕捉植物病害相关图像中像素之间的关系,增强关键信息的提取.最后,采用剪枝技术剔除模型中冗余特征信息,从而再次减少模型参数量,形成最终的轻量级网络模型Cut-MobileNet.为验证该模型的先进性,将其与轻量化模型(MobileNet V2、SqueezeNet、GoogLeNet)和非轻量化模型(Vision Trans-former、AlexNet)进行性能对比,研究结果表明,Cut-MobileNet在浮点运算量、准确率、单张图片推理时间、参数量、F1值和模型大小等性能指标上都取得了较优的效果.
Plant disease recognition method based on lightweight model with attention mechanism
In light of the issues associated with slow response speed,numerous parameters,and high computational memory requirements in existing plant disease recognition models,we proposed a lightweight neural network model.The model consisted of feature extraction layer,feature enhancement layer,and classifier.To reduce model size and increase network re-sponse speed,we utilized deep separable convolution in the feature extraction layer.To prevent gradient disappearance during network propagation and enhance the fusion of disease pixel features,we introduced the inverted residual block convolution kernel structure(IRBCKS)module into the feature extraction layer.Furthermore,we integrated a lightweight convolutional block attention module(CBAM)attention mechanism into the feature enhancement layer to capture the relationships between pixels in plant disease-related images and enhance key information extraction.Finally,we employed a pruning technique to eliminate redundant feature information from the base model,thereby reducing the number of model pa-rameters once again,yielding this lightweight network mod-el,Cut-MobileNet.In order to verify the progressiveness of this model,it was compared with lightweight models(MobileNet V2,SqueezeNet,GoogLeNet)and non-lightweigh models(Vision Transformer,AlexNet).The results show that better results have been achieved by Cut-MobileNet in floating-point operation,accuracy,single image inference time,parameter count,F1 value,and model size.

model pruningconvolutional block attention module(CBAM)attention mechanisminverted residual block convolution kernel structure(IRBCKS)moduleplant diseaseslightweight networks

苏航、陈旭昊、寿德荣、张朝阳、许彪、孙丙宇

展开 >

重庆三峡学院机械工程学院,重庆 404100

中国科学院合肥物质科学研究院智能机械研究所,安徽合肥 230000

中国工程物理研究院,四川成都 610000

模型剪枝 卷积块注意力模块(CBAM)注意力机制 大卷积核倒置残差结构(IRBCKS)模块 植物病害 轻量化网络

国家自然科学基金项目2019年重庆市人工智能+智慧农业学科群开放基金项目

61773360ZNNYKFA201901

2024

江苏农业学报
江苏省农业科学院

江苏农业学报

CSTPCD北大核心
影响因子:1.093
ISSN:1000-4440
年,卷(期):2024.40(8)