首页|基于GEE的多源遥感影像青梅种植信息提取

基于GEE的多源遥感影像青梅种植信息提取

扫码查看
针对粤东青梅种植区多为山地、丘陵兼有的复杂地形,实地测量青梅种植面积及其空间分布存在一定难度,本研究聚焦广东省汕尾市和揭阳市,利用Sentinel-1和Sentinel-2多光谱遥感影像数据,采用随机森林算法,探索4种不同特征组合在青梅分类精度方面的表现,并对Sentinel-1、Sentinel-2影像在空间制图中的精度进行了深入分析.研究结果表明,Sentinel-1、Sentinel-2影像采用组合4(光谱特征+植被指数+VV/VH+纹理特征)并运用随机森林算法获得了最优青梅分类精度,总体精度、Kappa系数和制图精度分别高达96.55%、0.957 6和98.03%;与官方统计数据相比,在揭阳市普宁市和汕尾市陆河县应用组合4估算青梅种植面积的精度分别高达99.70%和99.20%.研究发现,综合利用Sentinel-1、Sentinel-2多源遥感数据和多种特征的分类方法可以精准识别青梅的种植面积并提高制图精度.本研究结果不仅为粤东地区青梅种植者提供准确的种植面积估算和空间分布信息,而且为青梅种植管理和病虫害防治策略的制定提供技术参考.
Extraction of greengage planting information from multi-source remote sensing images based on GEE
The planting area of greengage in eastern Guangdong is mostly a complex terrain with both mountains and hills.It is difficult to measure the planting area and spatial distribution of greengage in the field.This study focused on Shanwei City and Jieyang City,and used the random forest algorithm to explore the performance of four different feature combinations in the classification accuracy of greengage based on Sentinel-1 and Sentinel-2 multi-spectral remote sensing image data.In addition,the accuracy of Sentinel-1 and Sentinel-2 images in spatial mapping was analyzed in depth.The results showed that the optimal classification accuracy of greengage was obtained when Sentinel-1 and Sentinel-2 images were processed by combination 4(spectral feature+vegetation index+VV/VH+texture feature)and random forest algo-rithm.The overall accuracy,Kappa coefficient and mapping accuracy were 96.55%,0.957 6 and 98.03%,respectively.Compared with the official statistics,the ac-curacy of estimating the planting area of greengage by u-sing combination 4 in Puning City of Jieyang City and Luhe County of Shanwei City was 99.70%and 99.20%,respec-tively.The comprehensive utilization of Sentinel-1 and Sentinel-2 multi-source remote sensing data and the classification methods using multiple features could accurately identify the planting area of greengage and improve the mapping accuracy.The results of this study not only provide accurate planting area estimation and spatial distribution information for greengage growers in eastern Guangdong,but also provide technical reference for the formulation of greengage planting management and pest control strategies.

greengagemulti-source remote sensingrandom forest algorithmGoogle Earth Engine

喻彩丽、陆健强、窦旭峰、洪国军

展开 >

汕尾职业技术学院海洋学院,广东汕尾 516600

华南农业大学电子工程学院(人工智能学院),广东广州 510642

塔里木大学生命科学与技术学院,新疆阿拉尔 843300

江西科技学院区域发展研究院,江西南昌 330200

展开 >

青梅 多源遥感 随机森林算法 Google Earth Engine

广东省普通高校重点领域专项国家自然科学基金地区基金项目

2021ZDZX411142061046

2024

江苏农业学报
江苏省农业科学院

江苏农业学报

CSTPCD北大核心
影响因子:1.093
ISSN:1000-4440
年,卷(期):2024.40(8)