首页|基于改进YOLOv5s模型的田间食用玫瑰花检测方法

基于改进YOLOv5s模型的田间食用玫瑰花检测方法

扫码查看
为了在田间环境下准确检测食用玫瑰花及其成熟度,实现花期玫瑰花的自动化采摘,针对田间光照、遮挡等因素造成识别精度较差的问题,提出了一种基于YOLOv5s的改进模型,对花蕾期、采摘期、败花期食用玫瑰花的生长状态进行检测.首先,为了增强多尺度特征融合能力,对特征融合结构进行改进.其次,采用多分支结构训练提高精度,在颈部网络C3模块进行改进.最后,为了提升特征信息的提取能力,在颈部网络中添加融合注意力模块,使模型关注检测目标,减少玫瑰花的误检及漏检现象.改进后的模型检测总体类别平均精度较原始模型提升了 3.6个百分点,达到90.4%,对3个花期玫瑰花的检测精度均有提升.本研究结果为非结构环境下的不同花期食用玫瑰花检测提供了更加准确的方法.
Detection method of edible roses in field based on improved YOLOv5s model
In order to accurately detect edible roses and their maturity in the field and realize the automatic picking of flowering roses,an improved model based on YOLOv5s was proposed to solve the problem of poor recognition accuracy caused by factors such as light and occlusion in the field.The growth state of edible roses at bud,picking and abortive flow-ering stages was detected.Firstly,in order to enhance the ability of multi-scale feature fusion,the feature fusion structure was improved.Secondly,multi-branch structure training was used to improve the accuracy,and the neck network C3 mod-ule was improved.Finally,in order to improve the ability of feature information extraction,a fusion attention module was added to the neck network to make the model focus on the detection target and reduce the false detection and missed detec-tion of roses.The mean average precision of the improved model was 3.6 percentage points higher than that of the original model,reaching 90.4%,and the detection accuracy of roses in three flowering periods was improved.The results of this study provide a more accurate method for detecting edible roses at different flowering stages in unstructured environment.

object detectionYOLOv5sfeature fusionattention mechanismedible roses

化春键、黄宇峰、蒋毅、俞建峰、陈莹

展开 >

江南大学机械工程学院,江苏无锡 214122

江苏省食品先进制造装备技术重点实验室,江苏无锡 214122

江南大学物联网工程学院,江苏无锡 214122

目标检测 YOLOv5s 特征融合 注意力机制 食用玫瑰花

国家自然科学基金项目

62173160

2024

江苏农业学报
江苏省农业科学院

江苏农业学报

CSTPCD北大核心
影响因子:1.093
ISSN:1000-4440
年,卷(期):2024.40(8)