首页|站在巨人肩膀上的初学者:社会科学研究中的生成式人工智能

站在巨人肩膀上的初学者:社会科学研究中的生成式人工智能

扫码查看
如何利用生成式人工智能助力社会科学研究是近期社会科学研究者们共同关心的重要议题之一.在此背景下,从一般社会科学研究的实践需求出发,通过具体的实例考察生成式人工智能在社会科学研究的理论、方法和研究偏误三个方面的具体表现.生成式人工智能对于总结和复现现有资料具有很大的优势,以其强大算力来预处理海量在线资料,可以帮助研究者节省信息搜索的时间成本和精力成本.但是,生成式人工智能难以对既有理论进行"阅读"后的"理解",同时亦不擅长进行方法层面的优劣对比和新分析工具的开发.此外,在生成内容上也表现出明显的偏见或者误差.背靠人类既有资料积累的生成式人工智能可谓站在巨人肩膀上,但由于其本身缺乏成熟的能动创新能力,生成式人工智能在学术研究的意义上仍然是一位"初学者".如何引导和培养这位"初学者",是社会科学研究者需要思考和完成的任务.
A Novice Standing on the Shoulders of Giants:Generative AI in Social Science Research
How to utilize generative AI to facilitate social science research has been one of the important issues of common concern for social science researchers recently.Against this backdrop,this paper examines the actual performance of generative AI in theory,methodology and research biases or errors from the practical needs of social science research in general through specific cases.Generative AI has great advantages in summarizing and reproducing existing materials.With its powerful computing power,it can help researchers save time and effort costs of information search by pre-processing massive online materials.However,generative AI finds it difficult to"understand"existing theories after"reading"them.It is also not good at comparing methods or developing new analytical tools.In addition,there are conspicuous biases or errors in the content it generates.Backed by existing human knowledge accumulation,generative AI can be said to stand on the shoulders of giants,but due to its own lack of mature capabilities for active innovation,generative AI is still a"novice"in terms of academic significance.Guiding and nurturing this"novice"is a task social science researchers need to think about and accomplish.

generative AIsocial science researchbias and errorcode

胡安宁、周森

展开 >

复旦大学社会学系

浙江师范大学教师教育学院

生成式人工智能 社会科学研究 偏差 代码

国家社会科学基金项目

22VRC140

2024

江苏社会科学
江苏社会科学杂志社

江苏社会科学

CSTPCDCSSCICHSSCD北大核心
影响因子:0.756
ISSN:1003-8671
年,卷(期):2024.(1)
  • 28