首页|基于工况序列寻优的列车节能操纵策略优化

基于工况序列寻优的列车节能操纵策略优化

扫码查看
传统"三阶段""四阶段"工况序列的列车操纵模式难以满足城市轨道交通复杂线路条件下的列车节能运行需求,本文提出一种基于工况序列寻优的列车节能操纵策略优化方法.将物理区间离散为多个等距离子区间,建立工况序列与子区间之间的映射关系,以区间总牵引能耗和运行时间最小化为目标构建列车节能操纵策略多目标优化模型.为提高模型求解效率,改进非支配排序遗传算法的交叉算子和距离算子,通过离散仿真求解列车节能操纵策略集.以福州地铁1号线的两个典型区间为对象进行案例分析,结果表明,相比传统操纵模式,优化后列车牵引能耗平均降低约19%.本文方法通过合理选择算法参数能够有效构建适应不同线路条件的运行工况序列,生成秒级运行时间划分下的列车节能操纵策略集.
An Energy-efficient Train Driving Strategy Based on Regime Sequences Optimization
The traditional"three-phase"and"four-phase"fixed regimes sequences of train driving mode can hardly meet the demand for energy-efficient train operation under the complex line conditions of urban rail transits.An energy-efficient operation strategy optimization method based on condition sequence optimization is proposed.A physical line section is discretized into several equidistant sub-sections,the mapping relationship between the sequence of driving regimes and sub-sections is established,and the multi-objective optimization model of train energy-saving maneuvering strategy is constructed with the objective of minimizing the total traction energy consumption and running time in the section.In order to improve the solution efficiency,the crossover operator and distance operator of the Non-dominated Sorting Genetic Algorithm-II are improved,and the set of energy-efficient train driving strategies is solved based on the discrete simulation method.Two typical sections of Fuzhou Metro Line 1 are used for the case study and the results show that the average reduction of traction energy consumption of trains after optimization is about 19%compared with the traditional manipulation mode.The proposed method can effectively construct operating condition sequences adapted to different line conditions by reasonably selecting the algorithm parameters,and generate a set of energy-efficient train operation strategies with accurate seconds of running time.

urban trafficenergy-efficient train drivingmulti-objective optimizationoperation regime sequencescomplex running conditions

赵东升、赵鹏、姚向明、杨中平、张伯男

展开 >

北京交通大学,交通运输学院,北京 100044

北京交通大学,电气工程学院,北京 100044

城市交通 列车节能操纵 多目标优化 运行工况序列 复杂运行环境

北京市自然科学基金北京市自然科学基金北京市科技计划项目

L221025L221019Z211100004121011

2024

交通运输系统工程与信息
中国系统工程学会

交通运输系统工程与信息

CSTPCD北大核心
影响因子:0.664
ISSN:1009-6744
年,卷(期):2024.24(2)
  • 11