首页|事件干扰下的城市轨道交通客流诱导优化研究

事件干扰下的城市轨道交通客流诱导优化研究

扫码查看
城市轨道交通系统在早晚高峰、大型活动和恶劣天气等干扰事件下,通常出现运营中断或服务能力下降的情况。为有效缓解这些干扰事件对客流的负面影响,提高城市轨道交通系统的韧性,本文提出一种针对事件干扰的客流诱导优化方法。首先,在考虑事件干扰影响和乘客诱导服从率的基础上,以系统中乘客总出行时间最小化为目标,建立轨道交通客流诱导模型。其次,设计一种基于列生成的精确算法,运用Gurobi求解限制主问题,A*算法求解价格子问题及分支定界算法求解整数解。最后,通过实际案例分析发现,运用本文所设计的加速策略能够提升求解效率66%~89%,求解效率显著优于单独使用Gurobi;并通过模拟轻微干扰到严重干扰事件的情景表明,所提出的优化方法适用于不同规模的城市轨道交通客流,能够在多种强度的干扰事件中有效地诱导乘客出行路径。
Urban Rail Transit Passenger Flow Induction Optimization Under Event Interference
Urban rail transit systems often experience operational disruptions or reduced service capacity during peak hours,major events,and adverse weather conditions.To effectively mitigate the negative impacts of these disruptions on passenger flow and enhance the resilience of urban rail transit systems,this paper proposes an optimization method for passenger flow guidance in response to disruptive events.First,considering the impact of disruptive events and the compliance rate of passenger guidance,this paper develops a rail transit passenger flow guidance model with the goal of minimizing the total travel time of passengers in the system.Then,a column generation-based exact algorithm is designed,and Gurobi is used to solve the restricted master problem.The A*algorithm is applied to solve the pricing subproblem,and the branch-and-bound algorithm is utilized to find integer solutions.Through actual case analysis,it is found that the acceleration strategies designed in this paper can improve the solving efficiency by 66%~89%,with performance significantly superior to using Gurobi alone.Simulations of scenarios ranging from minor to severe disruptions demonstrate that the proposed optimization method is applicable to urban rail transit passenger flows of varying scales,effectively guiding passenger travel paths under various disruption intensities.

urban trafficpassenger flow inductioncolumn generationdisruptive eventsA*algorithm

赵明玺、马昌喜、麻存瑞

展开 >

兰州交通大学,交通运输学院,兰州 730070

兰州交通大学,高原铁路运输智慧管控铁路行业重点实验室,兰州 730070

重庆邮电大学,现代邮政学院,重庆 400065

城市交通 客流诱导 列生成 干扰事件 A*算法

2024

交通运输系统工程与信息
中国系统工程学会

交通运输系统工程与信息

CSTPCD北大核心
影响因子:0.664
ISSN:1009-6744
年,卷(期):2024.24(6)