首页|兼顾效率与公平的城市轨道交通客流控制优化

兼顾效率与公平的城市轨道交通客流控制优化

扫码查看
高峰时段客流拥挤是大城市轨道交通面临的关键挑战,其不仅增加站内客流踩踏事故风险,还导致上下游车站的乘客等待时间存在显著差异。针对客流需求的随机性和动态性特点,本文构建一个旨在提高出行效率并改善乘客出行公平性的多目标客流控制优化模型。该模型通过合理确定各站点乘客的上车比例,在满足可行性约束条件下,优化所有乘客平均等待时间(效率)和每个站点乘客平均等待时间(公平性)与理想值间的欧式距离。为求解该多目标随机优化模型,本文开发了在线优化算法,针对每种需求场景制定客流控制决策。基于北京地铁5号线客流数据的数值实验结果表明,与先到先服务的基准策略相比,该策略能显著提升运营效率并改善公平性。此外,该算法能得到与Gurobi直接求解相近的结果,同时,将计算时间降低了76。3%。本文为解决高峰时段轨道交通客流拥挤问题提供了有效的策略和方法论参考。
Urban Rail Transit Passenger Flow Control Considering Efficiency and Fairness
Passenger overcrowding during peak hours is a critical challenge in urban rail transit of large cities.It not only increases the risk of passenger stampede accidents within stations but also leads to significant differences in waiting times between upstream and downstream stations.Considering the stochastic and dynamic nature of passenger demand,this paper develops a multi-objective passenger flow control optimization model that aims to enhance travel efficiency and improve passenger travel fairness.The model can determine reasonable boarding ratio of passengers at each station,and optimize the average waiting time of all passengers(efficiency)and the Euclidean distance between the average waiting time of passengers at each station(fairness)and the ideal value under the feasibility constraints.To solve this multi-objective stochastic optimization model,an online optimization algorithm is developed to make passenger flow control decisions for each demand scenario.Numerical experiments based on passenger flow data from Beijing Metro Line 5 show that,compared to the benchmark first-come-first-served policy,the proposed method can significantly improve operational efficiency and fairness.Moreover,the algorithm achieves results close to those obtained by direct solving with Gurobi while reducing the computation time by 76.3%.This paper provides an effective strategy and methodological reference for addressing the problem of passenger overcrowding in urban rail transit during peak hours.

urban trafficpassenger flow controlmulti-objective optimizationpassenger congestiononline algorithm

梁金鹏、赵莲芳、李利鸣、郑建风、宋达宽

展开 >

大连海事大学,交通运输工程学院,,辽宁大连 116026

大连海事大学,航运经济与管理学院,辽宁大连 116026

大连公共交通建设投资集团有限公司,辽宁大连 116011

城市交通 客流控制 多目标优化 客流拥挤 在线优化算法

2024

交通运输系统工程与信息
中国系统工程学会

交通运输系统工程与信息

CSTPCD北大核心
影响因子:0.664
ISSN:1009-6744
年,卷(期):2024.24(6)