首页|噪声环境下视听告警形态对驾驶员辨识反应的影响

噪声环境下视听告警形态对驾驶员辨识反应的影响

扫码查看
为探究危险驾驶场景下车载智能警示系统的不同视听告警形态对驾驶员辨识反应的影响,开展基于驾驶模拟器平台的视听双模态告警实验,重点关注在不同噪声环境下,不同视听告警形态的告警信号对驾驶员的告警效果.实验采用2种噪声环境(高噪声和低噪声)、3种视觉告警形态(0,1,2 Hz闪烁)和3种听觉告警形态(非语音、男声语音和女声语音)条件下的3因素设计,测量被试的辨识绩效和主观评价量表得分,并进行显著性影响分析.实验结果表明,相比0Hz不闪烁,1 Hz和2Hz闪烁更符合驾驶员认知状态且更易接受,且1Hz闪烁显著减少了驾驶员的反应时间;相比非语音,男声和女声语音告警更容易理解和接受,能显著降低驾驶员辨识反应时间,提升辨识正确率;相比低噪声环境,高噪声环境下驾驶员告警信息理解能力显著下降,辨识反应时间显著增加;无论在高噪声环境还是低噪声环境下,"有闪烁—语音"告警形态对驾驶员的告警效果最好,相对其他"视—听"告警形态,"1 Hz闪烁—男声语音"下,辨识绩效最优,知觉匹配和舒适度得分最高.
Effects of Audio-visual Warning Patterns on Identification Responses of Drivers Under Noisy Environments
To investigate the impact of different audio-visual warning patterns in vehicle-mounted intelligent early warning systems on driver recognition response in hazardous driving scenarios,this study conducted audio-visual bimodal warning experiments using a driving simulator platform,focusing on assessing the effectiveness of different audio-visual warning patterns under varying noise environments.The experimental design incorporated three factors:two noise environments(high and low)crossed with three visual warning patterns(0,1,2 Hz flashing)and three auditory warning patterns(non-speech,male speech,and female speech).Participants'performance data and subjective evaluation scores were collected,and a significance analysis was conducted to evaluate the effects.The results indicate that 1 Hz and 2 Hz flashing are more aligned with drivers'cognitive states and more acceptable than 0 Hz no flashing,with 1 Hz flashing significantly reducing reaction time.Male and female voice alarms are easier to understand and accept than non-verbal alarms,significantly decreasing recognition reaction time and improving accuracy.In high-noise environments,drivers'comprehension of alarm information decreases significantly compared to low-noise environments.Across both high and low noise environments,the"flashing-voice"warning pattern yields the best warning effect,with"1 Hz flashing-male voice"achieving superior recognition performance,the highest perceptual matching,and comfort scores among the tested"visual-audible"warning patterns.

intelligent transportationaudio-visual warning patternsmulti-factor ANOVAidentification responses of driversnoisy environmentwarning effects

赵芳华、陈颖

展开 >

河北工业大学,建筑与艺术设计学院,天津 300130

智能交通 视听告警形态 多因素方差分析 驾驶员辨识反应 噪声环境 告警效果

2024

交通运输系统工程与信息
中国系统工程学会

交通运输系统工程与信息

CSTPCD北大核心
影响因子:0.664
ISSN:1009-6744
年,卷(期):2024.24(6)