首页|基于MTF-gcForest的带钢表面缺陷分类方法研究

基于MTF-gcForest的带钢表面缺陷分类方法研究

扫码查看
针对带钢表面缺陷位置分布不均、类型复杂多样的特点,为保证特征提取的维度丰富性与识别准确率,提出一种基于多纹理特征融合与 gcForest 集成学习相结合的带钢缺陷识别方法 MTF-gcForest.首先提取带钢表面的灰度共生矩阵、局部二值模式、灰度游程矩阵特征,以充分挖掘带钢表面的纹理信息.然后,将归一化处理后的特征进行融合,最后用 gcForest 分类器进行分类.实验比较了单纹理特征和多纹理特征的性能表现,以及多种分类器的分类精度.实验结果表明:基于MTF-gcForest方法的平均准确率达到97.22%,优于其他带钢表面缺陷检测算法,具有较强的推广意义.
Study On Surface Defect Classification Method for Strip Steel Based on MTF-gcForest
Aiming at the uneven distribution and complexity of strip steel surface defects,this paper proposes a strip defect classification method known as MTF-gcForest(Multi-Texture Fusion-gcForest)to ensure the dimensional richness and recognition accuracy of feature extraction.Firstly,the gray-level co-occurrence matrix(GLCM),local binary patterns(LBP),and gray-level run-length matrix(GLRLM)of the strip surface are extracted to fully excavate the texture information of the strip surface.Then,the features are normalized,fused,and finally classified with the gcForest classifier.The experiment compares the performance of single-texture feature and multi-texture feature and evaluates the classification accuracy of various classifiers.The experimental results show that the average accuracy rate based on the MTF-gcForest method reaches 97.22%,which is better than other strip surface defect detection algorithms with significant potential for widespread application.

strip steeldefect detectiontexture featureGLCMGLRLMLBPgcForest

马文杰、王杰

展开 >

四川大学 机械工程学院,四川 成都 610065

带钢 缺陷检测 纹理特征 灰度共生矩阵 灰度游程矩阵 局部二值模式 gcForest

四川省重点研发项目

2022YFG0058

2024

机械
四川省机械研究设计院 四川省机械工程学会 四川省机械科技情报标准研究所

机械

影响因子:0.392
ISSN:1006-0316
年,卷(期):2024.51(2)
  • 19