首页|基于Social-STGCNN轨迹预测的Risley棱镜跟踪控制方法

基于Social-STGCNN轨迹预测的Risley棱镜跟踪控制方法

扫码查看
Risley棱镜视轴指向控制技术已被应用于军事领域的飞行目标跟踪,而飞行目标时间步坐标直接影响Risley棱镜跟踪精度.因此,开展飞行目标轨迹预测将为Risley棱镜视轴指向控制提供革新规划与控制思路.结合Social-STGCNN深度学习方法对Risley棱镜控制算法进行优化.首先定义数据集获取飞行目标信息,利用STGCNN预处理,然后运用旁轴法求得Risley棱镜方位与俯仰角并进行仿真分析实验.结果表明,在对Risley棱镜电机与视轴实现精密调控的同时,取得了0.151 mm的轴间误差,在MAE指标中比单纯采用图像误差反馈的控制算法低88.29%,有效验证了本文所控制策略的优化效果与跟踪性能.
Risley Prism Tracking Control Method Based on Social-STGCNN Trajectory Prediction
Risley prism boresight pointing control technology has been applied to flying target tracking in the military field.The coordinates of flying target time step directly affect the tracking accuracy of Risley prism.Therefore,carrying out flight target trajectory prediction will provide innovative planning and control ideas for Risley prism boresight pointing control.This article combines the Social-STGCNN deep learning method to optimize the Risley prism control algorithm.First,the data set is defined to obtain flight target information,and STGCNN is used to preprocess.Then the paraxial method is applied to obtain the Risley prism azimuth and pitch angle.Simulation analysis experiments are conducted.The results show that while achieving precise control of the Risley prism motor and the visual axis,an inter-axis error of 0.151 mm is obtained.This is 88.29%lower in the MAE index than the control algorithm that simply uses image error feedback,which effectively verifies the optimization effect and tracking performance of the control strategy proposed.

Risley prismtrajectory predictiontarget trackingdeep learning

陶冶、吴圣雨、吴小龑、李留留、雷新

展开 >

四川大学 机械工程学院,四川 成都 610065

Risley棱镜 轨迹预测 目标跟踪 深度学习

国家重点研发计划中国工程物理研究院院长基金

2022YFF0712903-1YZJJZQ2022001

2024

机械
四川省机械研究设计院 四川省机械工程学会 四川省机械科技情报标准研究所

机械

影响因子:0.392
ISSN:1006-0316
年,卷(期):2024.51(3)
  • 18