首页|基于YOLOv5的消防机器人火焰检测研究

基于YOLOv5的消防机器人火焰检测研究

扫码查看
消防机器人是辅助消防人员获得火灾现场信息、及时做出决策的有力帮手.针对消防机器人在火灾现场消防作业时面临的检测精确度有待进一步提高、模型运算量大的问题,提出一种改进YOLOv5 的消防机器人火焰检测算法.该方法在YOLOv5 原始模型的特征提取部分加入Involution算子,扩大感受野的同时使网络更轻量化,并且在特征提取和特征融合部分加入CBAM注意力机制,增强网络中对特征的提取,并保证底层特征图的特征信息,还在损失函数计算中引入新的边界框损失函数α-CIoU,以提升模型的收敛速度和对数据集的鲁棒性.实验结果表明,改进后的模型平均检测精度达93.6%,模型计算量下降58%,该方法有效提升了火焰检测的精度,降低了模型的计算量.
Research on Flame Detection of Firefighting Robot Based on YOLOv5
Firefighting robots strongly assist firefighters in obtaining information about fire scenes and making timely decisions.However,the detection accuracy and high computational complexity of the model in firefighting operations needs to be further improved.An improved YOLOv5 flame detection algorithm for fire-fighting robots is proposed.This method adopts the Involution operator to the feature extraction part of the original YOLOv5 model,which expands the receptive field and makes the network lighter.CBAM attention mechanism is introduced to the feature extraction and feature fusion part to further reform the feature extraction in the network.Furthermore,to ensure the feature information of the underlying feature map,a new bounding box loss function α-CIoU is added in the loss function calculation to improve the convergence speed of the model and the robustness to the data set.The experimental results demonstrate that the improved model achieves an average detection accuracy of 93.6%and reduces the computational workload of the model by 58%.This method effectively enhances the accuracy of flame detection while reducing the model's computational overhead.

flame detectionattention mechanismsboundary box loss function

陈春霞、王玲、李洋洋、王贤钧

展开 >

四川大学 机械工程学院,四川 成都 610065

火焰检测 注意力机制 边界框损失函数

四川大学泸州战略合作项目

2021CDLZ-4

2024

机械
四川省机械研究设计院 四川省机械工程学会 四川省机械科技情报标准研究所

机械

影响因子:0.392
ISSN:1006-0316
年,卷(期):2024.51(4)
  • 12