首页|一种考虑车轮多边形的转向架故障诊断深度学习方法

一种考虑车轮多边形的转向架故障诊断深度学习方法

扫码查看
目前转向架故障诊断研究仅仅考虑了较为理想的列车运行状态,未考虑车轮多边形的影响,而车轮多边形激励的存在能显著降低故障诊断的精度.为此,提出了一种基于LSTM网络和卷积神经网络的深度学习方法.该方法由LSTM以及一维卷积神经网络组成,并引入了注意力机制用于强调训练数据特征,提高转向架故障信号识别的准确率.以 CRH380 动车组转向架为例,引入车轮多边形激励,采用所提方法对不同工况下的关键部件故障进行了分类.通过与已有方法对比发现,所提方法由于引入了注意力机制,较大程度克服了车轮多边形带来的噪声干扰,提高了转向架故障诊断的精度.
A Deep Learning Method for Bogie Fault Diagnosis Considering Wheel Polygons
Current research on bogie fault diagnosis only considers ideal train operating conditions,without considering the influence of wheel polygons,the excitation of which significantly reduces the accuracy of fault diagnosis.For this reason,a deep learning method based on LSTM network and convolutional neural network is proposed.The method consists of a long short-term memory network as well as a one-dimensional convolutional neural network,and introduces an attention mechanism to emphasize the features of training data,thereby improving the accuracy of bogie fault signal recognition.Taking the bogie of CRH380 rolling stock as an example,the wheel polygon excitation is introduced,and the proposed method is used to classify the key component faults under different working conditions.By comparing with the existing methods,it is found that the proposed method,due to the introduction of the attention mechanism,overcomes the noise interference caused by wheel polygons to a greater extent,and improves the accuracy of bogie fault diagnosis.

bogiefault diagnosisdeep learningwheel polygonattention mechanism

张懿、杨旭锋、方修洋

展开 >

西南交通大学 机械工程学院,四川 成都 610031

转向架 故障诊断 深度学习 车轮多边形 注意力机制

中央高校基本科研业务费专项资金四川省科技计划项目

2682022ZTPY0792021YFG0178

2024

机械
四川省机械研究设计院 四川省机械工程学会 四川省机械科技情报标准研究所

机械

影响因子:0.392
ISSN:1006-0316
年,卷(期):2024.51(9)