首页|一种面向工业互联网安全的边缘设备随机时间轴流量感知模型

一种面向工业互联网安全的边缘设备随机时间轴流量感知模型

扫码查看
工业互联网边缘设备的数据流量感知对生产稳定性、供应链安全性、维护和优化生产过程起着关键作用.针对工业互联网中具有隐身机制的边缘设备后台攻击和多产线底层设备集群后台的漏洞攻击等安全问题,提出一种针对边缘数据突发异常的随机时间轴流量感知模型.通过在多个工作周期中设置相同时间轴的数据流同步感知时间窗,计算不同工作周期时间窗的数据流量积量的均差比,判断设备数据流量是否出现异常;并基于该感知模型,利用不同工作周期时间窗的数据流的残差矩阵和均差比矩阵构建了面向产业集群工业互联网的全域数据流异常关联态势描述模型.实验表明,所提出的随机时间轴流量异常感知模型,能实时监测工业互联网边缘设备的后台漏洞产生的安全问题.
Random Time-Axis Traffic Perception Model to Ensure Security in Industrial Internet of Things Edge Devices
The perception of data traffic in industrial Internet of Things(IIoT)edge devices plays a crucial role in ensuring production stability and supply chain security,and facilitates the maintenance and optimization of production process.In response to security issues such as background attacks on IIoT edge devices with stealth mechanisms and vulnerabilities in the backend of multi-production-line underlying device clusters,this paper proposes a random temporal axis traffic perception model for detecting sudden anomalies of edge data.The model synchronously perceives time windows of data traffic with the same temporal axis in multiple working cycles,calculates the average difference ratio of data traffic accumulations across different working cycle time windows to identifies anomalies of the data traffic.A comprehensive data traffic anomaly correlation situational awareness model is constructed for the IIoT of industrial clusters,based on residual matrices and average difference ratio matrices of data traffic in different working cycle time windows.The experiment demonstrates that the proposed model can effectively monitor security issues arising from backend vulnerabilities in IIoT edge devices in real-time.

Industrial Internet of Things(IIoT)edge devicesanomalous data trafficperception modelglobal correlation situation

董恩泽、俞晓红、李然、杨随先、李炎炎

展开 >

四川大学 机械工程学院,四川 成都 610065

工业互联网 边缘设备 异常数据流 感知模型 全域关联态势

四川省重点科技计划川渝协同创新项目四川省宜宾三江新区2023年科技计划项目

23QYCX01672023SJXOYBKJJH003

2024

机械
四川省机械研究设计院 四川省机械工程学会 四川省机械科技情报标准研究所

机械

影响因子:0.392
ISSN:1006-0316
年,卷(期):2024.51(10)
  • 10