首页|高时速地铁关键部件可靠性分析方法研究

高时速地铁关键部件可靠性分析方法研究

扫码查看
运行在市域间的高时速地铁车辆相比于普通地铁车辆具有运行速度快、站间距长、累计运营里程增长快等特点,其关键零部件故障所呈现的特点也有所不同,因此,分析高时速地铁车辆关键部件的故障数据特点,研究其可靠性分析方法.首先,计算各故障项点百万公里平均故障率,并将其作为可靠性特征量;其次,运用回归分析与曲线拟合的方法,对比多种曲线拟合优度,进一步对拟合曲线进行参数估计,从而确定百万公里平均故障率与运行里程的潜在函数关系;最后,通过数值反解得到关键部件故障项点在一定里程下的可靠度.结合某型地铁车辆故障数据进行了实例分析与验证,结果表明:以百万公里平均故障率作为可靠性特征量,结合回归分析与曲线拟合所求解的可靠度曲线,可以有效描述关键部件的可靠性与运行里程的关系.
Reliability Analysis Method for Key Components of High-Speed Metro
Compared with regular metro vehicles,high-speed metro vehicles running in urban areas have the characteristics of higher running speed,longer station spacing,and faster cumulative mileage growth,and the failure characteristics of their key components are also different.The failure data characteristics of key components of high-speed metro vehicles are analyzed to study the reliability analysis method for the key components.Firstly,the average failure rate per million kilometers of each failure point is calculated and taken as the reliability characteristic quantity.Secondly,regression analysis and curve fitting methods are used to compare the goodness of curve fitting,and further the parameters of the fitted curve are estimated to determine the potential functional relationship between the average failure rate of million kilometers and the operating mileage.Finally,the reliability of key component failure points at a certain mileage is obtained through numerical inverse solution.A case study are conducted on the failure data from a specific type of metro vehicle,which shows that the reliability curve obtained by using the average failure rate of millions of kilometers as the reliability characteristic quantity combined with regression analysis and curve fitting can effectively describe the relationship between the reliability of key components and the operating mileage.

metro vehiclereliability analysisregression analysiscurve fitting

王睿、崔旺、杨元元、宋冬利、罗光兵、王开云

展开 >

成都中电建瑞川轨道交通有限公司,四川 成都 610031

西南交通大学 牵引动力国家重点实验室,四川 成都 610031

地铁车辆 可靠性分析 回归分析 曲线拟合

2024

机械
四川省机械研究设计院 四川省机械工程学会 四川省机械科技情报标准研究所

机械

影响因子:0.392
ISSN:1006-0316
年,卷(期):2024.51(12)