首页|基于机理和反向传播神经网络的转炉石灰加入量计算模型

基于机理和反向传播神经网络的转炉石灰加入量计算模型

扫码查看
针对高废钢比转炉冶炼条件,以转炉碱度计算为理论基础,以某钢厂转炉一级和二级的数采系统为数据来源,利用设计数据筛选规则、数据预处理和计算损失函数提高计算精度,构建了基于机理+结构为15-3-50-5-1的反向传播(BP)神经网络的石灰加入量计算模型,并将计算结果与真实值和传统模型计算结果进行了对比。结果表明:机理+BP神经网络模型预测的石灰加入质量与真实值的平均相对误差仅为10。7%,相较传统计算模型下降约7%,说明构建的新模型预测误差小、精度高。
Lime Addition Calculation Model of Converter Based on Mechanism and Back Propagation Neural Network
Aiming at the smelting conditions of converter with high scrap ratio,with the calculation of converter alkalinty as theory basis,and the primary and secondary data collection system of steel plant converter as the data source,and by using the designing data screening rules,data prepocessing and calculating loss funiction to improve the calculation accuracy,the lime addition calculation model based on mechanism and back propagation neural network with structure of 15-3-50-5-1 was established.The calculated results were compared with the real values and the calculated results of the traditional model.The results show that the average relative error between the lime added quality predicted by the mechanism+BP neural network model and the real value was only 10.7%,which was about 7%lower than the relative error between traditional calculation model calculated result and real value,indicating that the new model had small error and high precision in predicting the lime addition.

BP neural networkbig dataconverterlimeintelligent joining model

雷明钢、李守华、何方、武志杰、刘欣悦、杨永刚、米振莉

展开 >

邯郸钢铁集团有限公司,邯郸 056015

北京科技大学,高效轧制与智能制造国家工程研究中心,北京 100083

BP神经网络 大数据 转炉 石灰 智能加入模型

2024

机械工程材料
上海材料研究所

机械工程材料

CSTPCD北大核心
影响因子:0.558
ISSN:1000-3738
年,卷(期):2024.48(8)
  • 9