首页|联合多时相GF-6 WFV和Sentinel-2的森林类型识别

联合多时相GF-6 WFV和Sentinel-2的森林类型识别

扫码查看
[目的]我国南方地区多云雨,地型较破碎,森林类型精细识别较为困难,探讨联合多源、多时相的遥感数据对森林类型识别具有重要意义。[方法]以江西省信丰县为研究区,基于2019年森林资源二类调查数据,将森林划分为松林、杉木林、阔叶林、针叶混交林、针阔混交林、竹林、灌木林和其他林地等8种类型,利用随机森林算法比较GF-6 WFV和Sentinel-2最佳时相相同波段(紫/深蓝、蓝、绿、红、近红外、红边)和不同波段(黄边、短波红外)的森林类型识别能力,构建联合光谱特征集。联合多时相GF-6 WFV和Sentinel-2,构建多时相植被指数特征集,结合联合光谱特征集、纹理特征和地形特征,通过随机森林和递归消除法构建特征变量优选数据集进行森林类型识别,利用混淆矩阵和森林类型的实际分布对识别结果进行精度验证。[结果](1)GF-6 WFV蓝、绿和红波段组合的总体精度为58。31%,分别加入紫、近红外、红边、黄边和Sentinel-2短波红外波段后,其总体精度分别提高1。99%、8。90%、10。71%、1。50%和14。10%;Sentinel-2蓝、绿和红波段组合的总体精度为54。68%,分别加入深蓝、近红外、红边、短波红外和GF-6 WFV黄边波段后,其总体精度分别提高3。30%、10。82%、12。92%、17。31%和3。97%。(2)特征变量优选数据集的总体精度和Kappa系数为80。80%和75。56%,贡献程度大小依次为GF-6 WFV多时相植被指数、Sentinel-2多时相植被指数、GF-6 WFV光谱特征、Sentinel-2光谱特征、地形特征和纹理特征,贡献率分别为40。44%、23。23%、18。12%、10。21%、4。61%和3。39%。(3)松林、杉木林、阔叶林、针叶混交林、针阔混交林、竹林、灌木林和其他林地的制图精度分别为86。97%、85。60%、88。61%、9。43%、19。01%、53。60%、86。90%和82。56%,用户精度分别为81。42%、79。79%、77。57%、71。43%、81。82%、67。00%、87。74%和82。88%,识别结果与研究区实际森林类型分布较吻合。[结论]联合多时相GF-6 WFV和Sentinel-2可以综合多时相、多源影像的优点,能够有效提高森林类型的识别精度。
Forest type identification by combining multi-temporal GF-6 WFV and Sentinel-2 data
[Objective]Because of the broken terrain and frequent cloudy and rainy weather,it is difficult to finely identify forest types in southern China.Exploring joint multi-source and multi-temporal remote sensing data is important for identifying forest types.[Method]This study took Xinfeng County of Jiangxi Province as the study area.Based on the Forest Resource Inventory of the Xinfeng County in 2019,eight forest types were identified,including pine forest,Cunninghamia lanceolata forest,broad-leaved forest,coniferous mixed forest,coniferous and broad-leaved mixed forest,bamboo forest,shrub forest and other forestry land.The random forest algorithm was used to compare the forest type identification ability of GF-6 WFV and Sentinel-2 in the same band(purple/dark blue,blue,green,red,near infrared,red edge)and different bands(yellow edge,short-wave infrared),and a combined spectral feature dataset was built.By combining the multi-temporal vegetation index feature dataset which was built by GF-6 WFV and Sentinel-2,the combined spectral feature dataset,texture features,and terrain features,a feature variable selection dataset was constructed using random forest and recursive elimination method for forest type identification.The accuracy of the identification results was verified by using confusion matrix and the actual distribution of forest types.[Result](1)The overall accuracy of the GF-6 WFV for the combination of blue,green and red band was 58.31%.With the addition of the purple,nearinfrared,red edge,yellow edge of GF-6 WFV band and short-wave infrared of Sentinel-2 band,the overall accuracy increased by 1.99%,8.90%,10.71%,1.50%and 14.10%,respectively.The overall accuracy of the blue,green and red band combination of Sentinel-2 was 54.68%.With the addition of the deep blue,nearinfrared,red edge,short-wave infrared of Sentinel-2 band and yellow edge of GF-6 WFV band,the overall accuracy increased by 3.30%,10.82%,12.92%,17.31%and 3.97%,respectively.(2)The overall accuracy and Kappa coefficient of feature variable selection dataset were 80.80%and 75.56%.The order of contribution degree was GF-6 WFV multi-temporal vegetation index,followed by sentinel-2 multi-temporal vegetation index,GF-6 WFV spectral feature,Sentinel-2 spectral feature,topographic feature and texture feature.The contribution rates were 40.44%,23.23%,18.12%,10.21%,4.61%and 3.39%,respectively.(3)The producer's accuracy of pine forest,Cunninghamia lanceolata forest,broad-leaved forest,coniferous mixed forest,coniferous and broad-leaved mixed forest,bamboo forest,shrub forest and other forestry land were 86.97%,85.60%,88.61%,9.43%,19.01%,53.60%,86.90%and 82.56%,respectively,and the user's accuracy was 81.42%,79.79%,77.57%,71.43%,81.82%,67.00%,87.74%and 82.88%,respectively.The identification results are relatively consistent with the actual forest type distribution in the study area.[Conclusion]The combination of multi-temporal GF-6 WFV and Sentinel-2 can integrate the advantages of multi-temporal and multi-source images and effectively improve the identification accuracy of forest types.

GF-6 WFVSentinel-2forest-type identificationrandom forest

叶青龙、欧阳勋志、黄诚、李坚锋、潘萍

展开 >

江西农业大学 林学院/鄱阳湖流域森林生态系统保护与修复国家林业和草原局重点实验室,江西 南昌 330045

GF-6 WFV Sentinel-2 森林类型识别 随机森林

国家自然科学基金国家自然科学基金

3236038932260392

2024

江西农业大学学报
江西农业大学

江西农业大学学报

CSTPCD北大核心
影响因子:0.748
ISSN:1000-2286
年,卷(期):2024.46(2)
  • 33