首页|基于PND-Net模型的水稻钾素胁迫程度诊断识别

基于PND-Net模型的水稻钾素胁迫程度诊断识别

扫码查看
[目的]为了快速、准确地诊断水稻钾素胁迫程度,在水稻营养诊断中推广深度学习技术的应用。[方法]以平板扫描仪获取不同程度钾素施肥胁迫栽培的水稻叶片图像为研究对象,采用随机角度旋转、水平翻转、对比度增强、锐化增强、混合增强、高斯噪声、椒盐噪声及乘性噪声等方法扩充数据集。提出水稻钾素胁迫程度深度学习诊断模型PND-Net(Potassium Nutrition Diagnosis Network),旨在精确识别水稻钾素胁迫程度类别。PND-Net集成了2种多尺度特征提取模块MS(multi-scale)和RMS(Residual multi-scale),从图像的不同尺度中提取对钾素胁迫反应敏感的特征。同时引入Coordinate Attention模块,以关注叶片图像中的方向和位置信息,从而提升模型捕捉与钾素胁迫相关信息的能力。最后引入Multi-Branch Inverted residual模块来增强模型的长距离特征捕获能力。[结果]与DenseNet-201、ResNet-34和GoogLeNet-V3等主流模型相比,PND-Net在识别水稻钾素胁迫程度方面表现更为出色,水稻分蘖期和拔节期的识别准确率达到了最高的77。11%与84。31%。此外,在植物病害公共数据集(Plant Village)上,PND-Net也取得了显著的成绩,进一步验证了模型的泛化能力。模型评估结果进一步证实,研究提出的PND-Net有优异的召回率与精密度,分蘖期为77。23%和77。14%,拔节期分别为84。4%和84。33%。[结论]PND-Net能够准确识别水稻的钾素胁迫程度,为水稻各个生长期及时追肥提供理论依据,也为水稻等农作物的营养诊断识别提供了一种新的可行方法。
Diagnosis and recognition of potassium stress degree in rice based on PND-Net model
[Objective]In order to quickly and accurately diagnose the degree of potassium stress in rice,the application of deep learning technology was promoted in the nutritional diagnosis of rice.[Method]The leaf images of rice cultivated under different degrees of potassium fertilization stress were obtained by flatbed scanner as the research object,and the data set was expanded by random Angle rotation,horizontal inversion,contrast enhancement,sharpening enhancement,mixing enhancement,Gaussian noise,pepper and salt noise,multiplicative noise and other methods.A Potassium Nutrition Diagnosis Network(PND-Net),a deep learning diagnostic model for potassium stress in rice,was proposed to accurately identify potassium stress categories in rice.PND-Net integrated two multi-scale feature extraction modules,MS(multi-scale)and RMS(Residual multi-scale),to extract the features sensitive to potassium stress response from different scales of images.Coordinate Attention module was introduced to examine the direction and position information in the leaf image,thus improving the ability of the model to capture information related to potassium stress.Finally,the Multi-Branch Inverted residual module is introduced to enhance the capability of long distance feature capture.[Result]Compared with DenseNet-201,ResNet-34 and GoogLeNet-V3 models,PND-Net had better performance in recognizing the degree of potassium stress in rice,with the highest recognition accuracy of 77.11%and 84.31%at tillering stage and jointing stage.In addition,PND-Net also achieved remarkable results in Plant Village,which further verified the generalization ability of the model.The results of model evaluation further confirmed that the PGN-NET had excellent recall rate and precision,77.23%and 77.14%at tillering stage and 84.4%and 84.33%at jointing stage,respectively.[Conclusion]PND-Net can accurately identify the degree of potassium stress in rice.It provides a theoretical basis for timely topdressing of rice at each growth stage,and a new feasible method for nutritional diagnosis and recognition of rice and other crops.

ricedeep learningdiagnosis of potassium stress degreecoordinate attentionmultiscale feature

吴正、杨红云、孙爱珍、孔杰、黄淑梅、吴建富

展开 >

江西农业大学 计算机与信息工程学院,江西 南昌 330045

江西农业大学 软件学院,江西 南昌 330045

江西农业大学 国土资源与环境学院,江西 南昌 330045

水稻 深度学习 钾素胁迫程度诊断 Coordinate Attention 多尺度特征

2024

江西农业大学学报
江西农业大学

江西农业大学学报

CSTPCD北大核心
影响因子:0.748
ISSN:1000-2286
年,卷(期):2024.46(6)